IMMUNOLOGY AND PROSPECTS OF IMMUNOTHERAPY OF THE PRIMARY MALIGNANT BRAIN TUMORS: CELLULAR THERAPY, VIROTHERAPY
##article.numberofdownloads## 77
##article.numberofviews## 126
PDF (Русский)

Keywords

HIGH-GRADE GLIOMAS
IMMUNOTHERAPY
CELLULAR IMMUNITY

How to Cite

Kuleva, S., & Druy, A. (2020). IMMUNOLOGY AND PROSPECTS OF IMMUNOTHERAPY OF THE PRIMARY MALIGNANT BRAIN TUMORS: CELLULAR THERAPY, VIROTHERAPY. Voprosy Onkologii, 66(3), 218–222. https://doi.org/10.37469/0507-3758-2020-66-3-218-222

Abstract

High-grade gliomas (Grade III-IV) are aggressive brain tumor with poor prognosis. Recent investigations are aimed on pathogenic mechanisms of tumor growth on cellular at the molecular-genetic level for the development of effective individualized treatment methods, while the limit of survival benefit of conventional therapeutic options has been already reached. Integration of immunotherapeutic approach (cellular therapy, virotherapy) into treatment schemes of the brain tumors is relevant and promising strategy based on biological features of tumor tissue.
https://doi.org/10.37469/0507-3758-2020-66-3-218-222
##article.numberofdownloads## 77
##article.numberofviews## 126
PDF (Русский)

References

Bigner D.D., Brown M., Coleman R.E., et al. Phase I studies of treatment of malignant gliomas and neoplastic meningitis with 131I-radiolabeled monoclonal antibodies anti-tenascin 81C6 and anti-chondroitin proteoglycan sulfate Me1-14 F (ab')2 - a preliminary report // J. Neurooncol. - 1995. - Vol. 24(1). - P. 109-122.

Blancher A., Roubinet F, Grancher A.S., et al. Local immunotherapy of recurrent glioblastoma multiforme by intracerebral perfusion of interleukin-2 and LAK cells // Eur. Cytokine Netw. - 1993. - Vol. 4(5). - P 331-341.

Медяник И.А., Мухина И.В., Яковлева Е.И. и др. Способ временного повышения проницаемости гематоэнце-фалического барьера. Патент РФ No.2391107. 2010.

Bidros D.S., Vogelbaum M.A. Novel drug delivery strategies in neuro-oncology // Neurotherapeutics. - 2009. - Vol. 6(3). - P. 539-546.

Liu H.L., Hua M.Y, Chen PY et al. Blood-brain barrier disruption with focused ultrasound enhances delivery of chemotherapeutic drugs for glioblastoma treatment // Radiology. - 2010. - Vol. 255(2). - P. 415-425.

Anirban G. Immune connection in glioma: fiction, fact and option, glioma, in glioma - exploring its biology and practical relevance. In: Glioma - exploring its biology and practical relevance. Ed. by Ghosh D.A. InTech, 2011. - Р. 305-324.

Flugel A., Schwaiger F.W., Neumann H. et al. Neuronal FasL induces cell death of encephalitogenic T lymphocytes // Brain Pathol. - 2000. - Vol. 10(3). - P. 353-364.

Hickey W.F. Leukocyte traffic in the central nervous system: the participants and their roles // Semin. Immunol. - 1999. - Vol. 11(2). - P 125-137.

Blancher A., Roubinet F., Grancher A.S., et al. Local immunotherapy of recurrent glioblastoma multiforme by intracerebral perfusion of interleukin-2 and LAK cells // Eur. Cytokine Netw. - 1993. - Vol. 4(5). - P. 331-341.

Boiardi A., Silvani A., Ruffini PA. et al. Loco-regional immunotherapy with recombinant interleukin-2 and adherent lymphokine-activated killer cells (A-LAK) in recurrent glioblastoma patients // Cancer Immunol. Immunother. - 1994. - Vol. 39(3). - P 193-197.

Hayes R.L., Koslow M., Hiesiger E.M. et al. Improved long term survival after intracavitary interleukin-2 and lymphokineactivated killer cells for adults with recurrent malignant glioma // Cancer. - 1995. - Vol. 76(5). - P. 840-852.

Plautz G.E., Barnett G.H., Miller D.W. et al. Systemic T cell adoptive immunotherapy of malignant gliomas // J. Neurosurg. - 1998. - Vol. 89(1). - P 42-51.

Nakazawa T., Nakamura M., Park YS. et al. Cytotoxic human peripheral blood-derived y5T cells kill glioblastoma cell lines: implications for cell-based immunotherapy for patients with glioblastoma // J. Neurooncol. - 2014. - Vol. 116(1). - P. 1-9.

Miyauchi J.T., Tsirka S.E. Advances in immunothera-peutic research for glioma therapy // J. Neurol. - 2018. - Vol. 265(4). - P. 741-756.

Brown C.E., Aguilar B., Starr R. et al. Optimization of IL13Ra2-Targeted Chimeric Antigen Receptor T Cells for Improved Anti-tumor Efficacy against Glioblastoma // Mol. Ther. - 2018. - Vol. 26(1). - P. 31-44.

Abramson J.S., McGree B., Noyes S. et al. Anti-CD19 CAR T Cells in CNS Diffuse Large-B-Cell Lymphoma // Engl. J. Med. - 2017. - Vol. 377(8). - P. 783-784.

Tiberghien P., Deconinck E., Adotevi O. More on Anti-CD19 CAR T Cells in CNS Diffuse Large-B-Cell Lymphoma // N. Engl. J. Med. - 2017. - Vol. 377(21). - P. 2101-2102.

Brown C.E., Aguilar B., Starr R. et al. Optimization of IL13Ra2-Targeted Chimeric Antigen Receptor T Cells for Improved Anti-tumor Efficacy against Glioblastoma // Mol. Ther. - 2018. - Vol. 26(1). - P. 31-44.

O'Rourke D.M., Nasrallah M.P, Desai A. et al. A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma // Sci. Transl. Med. - 2017. - Vol. 9(399). - pii: eaaa0984.

Murakami T., Nakazawa T., Natsume A. et al. Novel Human NK Cell Line Carrying CAR Targeting EGFRvIII Induces Antitumor Effects in Glioblastoma Cells // Anticancer Res. - 2018. - Vol. 38(9). - P. 5049-5056.

Jiang H., Gao H., Kong J. et al. Selective Targeting of Glioblastoma with EGFRvIII/EGFR Bitargeted Chimeric Antigen Receptor T Cell // Cancer Immunol. Res. -2018. - Vol. 6(11). - P. 1314-1326.

Zheng Y, Gao N., Fu Y.L. et al. Generation of regulable EG-FRvIII targeted chimeric antigen receptor T cells for adoptive cell therapy of glioblastoma // Biochem. Biophys. Res. Commun. - 2018. - Vol. 507(1-4). - P. 59-66.

Wang S., O'Rourke D.M., Chawla S. et al. Multiparamet-ric magnetic resonance imaging in the assessment of anti-EGFRvIII chimeric antigen receptor T cell therapy in patients with recurrent glioblastoma // Br. J. Cancer. - 2019. - Vol. 120(1). - P. 54-56.

Cloughesy T.F., Landolfi J., Hogan D.J. et al. Phase 1 trial of vocimagene amiretrorepvec and 5-fluorocytosine for recurrent high-grade glioma // Sci. Transl. Med. - 2016. - Vol. 8(341). - P. 341ra75.

PVSRIPO for Recurrent Glioblastoma (GBM) (PVSRIPO) ClinicalTrials.gov Identifier: NCT01491893.

Dhiman N., Jacobson R.M., Poland G.A. Measles virus receptors: SLAM and CD46 // Rev. Med. Virol. - 2004. - Vol. 14(4). - P 217-229.

Hardcastle J., Mills L., Malo C.S. et al. Immunovirotherapy with measles virus strains in combination with anti-PD-1 antibody blockade enhances antitumor activity in glioblastoma treatment // Neuro. Oncol. - 2017. - Vol. 19(4). - P 493-502.

Msaouel P., Opyrchal M., Dispenzieri A. et al. Clinical Trials with Oncolytic Measles Virus: Current Status and Future Prospects // Curr. Cancer Drug Targets. - 2018. - Vol. 18(2). - P 177-187.

Яшин К.С., Медяник И.А. Иммунотерапия злокачественных опухолей головного мозга (обзор) // СТМ. - 2014. - № 4. - С. 189-200.

Okada H., Weller M., Huang R. et al. Immunotherapy Response Assessment in Neuro-Oncology (iRANO): A Report of the RANO Working Group // Lancet Oncol. - 2015. - Vol. 16(15). - P. e534-e542.

Galldiks N., Kocher M., Langen K.J. et al. Pseudoprogression after glioma therapy: an update // Expert Rev. Neurother. - 2017. - Vol. 17(11). - P 1109-1115.

Ellingson B.M., Chung C., Pope W.B. et al. Pseudoprogression, radionecrosis, inflammation or true tumor progression? challenges associated with glioblastoma response assessment in an evolving therapeutic landscape // J. Neurooncol. - 2017. - Vol. 134(3). - P 495-504.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

© АННМО «Вопросы онкологии», Copyright (c) 2020