Мезенхимальные стволовые клетки в лечении онкологических пациентов с пневмонией COVID-19
pdf

Ключевые слова

обзор
мезенхимальные стволовые клетки
МСК
SARS-CoV-2
пневмония
COVID-19
воспаление
цитокины
клинические исследования

Как цитировать

Балдуева, И., Нехаева, Т., & Беляев, А. (2022). Мезенхимальные стволовые клетки в лечении онкологических пациентов с пневмонией COVID-19. Вопросы онкологии, 67(1), 7–12. https://doi.org/10.37469/0507-3758-2021-67-1-7-12

Аннотация

В обзоре обсуждаются патогенетические механизмы развития респираторной инфекции COVID-19 и вопросы клинического использования клеточных технологий на основе мезенхимальных стволовых клеток (МСК). В связи с глобальной пандемией респираторной инфекции COVID-19/SARS-CoV-2, связанной с распространением вируса SARS-CoV-2, и сложностью в лечение тяжелых случаев инфекции, иммуномодулирующая активность МСК, обусловленная факторами воспалительного микроокружения может быть использована в комплексном лечении пневмонии COVID-19, в том числе и у онкологических пациентов.

https://doi.org/10.37469/0507-3758-2021-67-1-7-12
pdf

Библиографические ссылки

Adjuvant therapy with mesenchymal stem cells in patients diagnosed with COVID-19 in critical condition. www.clinicaltrials.gov.

Altenburg A.F., Rimmelzwaan G.F., de Vries R.D. Virus-specific T cells as correlate of (cross-) protective immunity against influenza. Vaccine. 2015; 33: 500-506.

Babajani A., Soltani P., Jamshidi E. et al. Mesenchymal stem cells with anti-neoplastic agents for targeted treatment of cancer. Front. Bioeng. Biotechnol. 2020;8: 748.

Behrmann O., Spiegel M. COVID-19: from rapid genome sequencing to fast decisions. The Lancet Infect. Dis. 2020; 20: 1218.

Daniëlle G. Leuning, Nick R. M. et al. The cytokine secretion profile of mesenchymal stromal cells is determined by surface structure of the microenvironment. Scientific Reports. 2018;8, Article number: 7716: 9.

Dominici M., Le Blanc K., Mueller I. et al. Minimal criteria for defining multipotent mesenchymal stromal cells. Int. Soc. Cell Ther. position statement. Cytotherapy. 2006;8: 315-317.

Fan E., Brode D., Slutsky A.S. Acute Respiratory distress syndrome: advances in diagnosis and treatment. JAMA. 2018; 319: 698-710.

Fan X-L. Zhang Y., Li X., Fu Q-L. Mechanisms underlying the protective effects of mesenchymal stem cell-based therapy. Cell. Mol. Life Sci. 2020;77: 2771-2794.

Galiatsatos P. What coronavirus does to the lung? Galiatsatos P. is an expert on lung disease at Johns Hopkins Bayview Medical Center.

Hamming I., Timens W., Bulthuis M.L.C. et al. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. Pathol. 2004; 203: 631-637.

Helmy M.A., Mohamed A.F., Rasheed H.M. et al. A protocol for primary isolation and culture of adipose-derived stem cells and their phenotypic profile. Alexandria J. Med. 2020; 56: 42-50.

Hoffmann M., Kleine-Weber H., Svhoeder S. et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020; 181: 271-280.

Huang C., Wang Y, Li X. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet (London, England). 2020; 395: 497-506.

Iacob S., Iacob D.G. SARS-CoV-2 Treatment Approaches: Numerous Options, No Certainty for a Versatile Virus. Front. Pharmacol. 2020; 11, Art. 1224.

Inui S., Fujikawa A., Jitsu M. et al. Chest CT findings in cases from the cruise ship “Diamond Princess” with coronavirus disease 2019 (COVID-19) Cardiothoracic Imaging. Radiology: Cardiothoracic Imaging. 2020.

Kim D., Lee J-Y., Yang J-S. et al. The architecture of SARS-CoV-2 transcriptome. Cell. 2020;181: 914-921.

Leng Z., Zhu R., Hou W. et al. Transplantation of ACE2- mesenchymal stem cells improves the outcome of patients wits COVID-19 pneumonia. Aging and Disease. 2020; 11: 216-228.

Lian Q., Zhang Y., Gao F. et al. Direct differentiation of human-induced pluripotent stem cells to mesenchymal stem cells. Methods Mol. Biol. 2016; 1416: 289-298.

Matthay M.A., Zemans R.L., Zimmerman G.A. et al. Acute respiratory distress syndrome. Nat. Rev. Dis. Primers. 2019; 5: 18.

Matthay M.A., Zimmerman G.A. Acute lung injury and the acute respiratory distress syndrome: four decades of inquiry into pathogenesis and rational management. Am. J. Respir Cell Mol. Biol. 2005; 33: 391-327.

Mesenchhymal stem cells for the treatment of COVID-19. www.clinicaltrials.gov.

Minervina A.A., Komech E.A., Titov A. et al. Longitudinal high-throughput TCR repertoire profiling reveals the dynamics of T cell memory formation after mild COVID-19 infection. BioRxiv. 2020.

Miyazawa M. Immunopathogenesis of SARS-CoV-2-induced pneumonia: lessons from influenza virus infection. Inflamm. Regen. 2020; 40: 39.

Negi N., Griffin M.D. Effects of mesenchymal stromal cells on regulatory T cells: Current understanding and clinical relevance. Stem cells. 2020; 38: 596-605.

Nitulescu G.M., Paunescu H., Moschos S.A. et al. Comprehensive analysis of drugs. Int. J. Mol. Med. 2020;46: 467-488.

Rahimi A., Mirzazadeh A., Tavakolpour S. et al. Genetics and genomics of SARS-CoV: A review of the literature with the special focus on genetic diversity and SARS-CoV genome detection. Genomics. 2020.

Rolandsson E.S., Åhrman E., Palani A. et al. Quantitative proteomic characterization of lung-MSC and bone marrow-MSC using DIA-mass spectrometry. Sci Rep. 2017; 7: 9316.

Sharma K., Husain S.Y., Das P. et al. Regenerative potential of mesenchymal stem cells: therapeutic applications in lung disorders. In: Pharm PV (ed) Liver, lung and heart regeneration. Springer International Publishing, Cham. 2020; 77-117.

Sveiven S.N., Nordgren T.M. Lung-resident mesenchymal stromal cells are tissue-specific regulators of lung homeostasis. Am. J. Physiol. Lung Cell Mol. Physiol. 2020; 319: L197-L210.

To K.F., Lo A.W.I. Exploring the pathogenesis of severe acute respiratory syndrome (SARS): The tissue distribution of the coronavirus (SARS-CoV) and its putative receptor, angiotensin-converting enzyme 2 (AGE). Pathol. 2004; 203: 740-743.

Wen F., Yu H., Guo J. et al. Identification of the hyper-variable genomic hotspot for the novel coronavirus SARS-CoV-2. J. Infect. 2020; 80: 671-693.

Wilkinson T.M., Li C.K.F., Chui C.S.C. et al. Preexisting influenza-specific CD4+ T cells correlate with disease protection against influenza challenge in humans. Nat. Med. 2012;18: 274-280.

Wrapp D., Wang N., Corbett K.S. et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020;367: 1260-1263.

Wu X., Jiang J., Gu Z. et al. Mesenchymal stromal cell therapies: immunomodulatory properties and clinical progress. Stem cell Res. Ther. 2020;11: 345.

Zhou P., Yang X.G., Wang B. et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579: 270-273.

Zhu N., Zhang D., Wang W. et al. China novel coronavirus investigating and research team. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 2020;382: 727-733.

Лицензия Creative Commons

Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-NoDerivatives» («Атрибуция — Некоммерческое использование — Без производных произведений») 4.0 Всемирная.

© АННМО «Вопросы онкологии», Copyright (c) 2021