Predictive molecular genetic tests in clinical oncology
pdf (Русский)

Keywords

predictive biomarkers,
adenocarcinoma,
cancer,
targeted therapy,
molecular diagnostics,
review

How to Cite

Ianus, G., Iyevleva, A., Aleksakhina, S., & Imyanitov, E. . (2022). Predictive molecular genetic tests in clinical oncology. Voprosy Onkologii, 68(1), 17–28. https://doi.org/10.37469/0507-3758-2022-68-1-17-28

Abstract

Molecular genetic testing is an essential component of modern practical oncology. It is aimed at individualized therapy prescription and can significantly improve the life expectancy of patients. The analyzed molecular events include alterations affecting single genes (EGFR, KRAS, etc.), as well as integral characteristics of tumor genome, for example, total tumor mutation burden (TMB) or deficiency of certain types of DNA repair (microsatellite instability, homologous DNA recombination deficiency, etc.). The spectrum of clinically relevant genetic markers continues to expand, and some of them acquire the status of "agnostic", i.e., applicable to tumors of various origin. As a consequence, there is a trend toward substitution of individual gene testing with the use of multigene panels allowing simultaneous assessment of all significant predictive markers.

https://doi.org/10.37469/0507-3758-2022-68-1-17-28
pdf (Русский)

References

Remick DG, Kunkel SL, Holbrook EA, Hanson CA. Theory and applications of the polymerase chain reaction // Am J Clin Pathol. 1990;93(4 Suppl 1):S49–54.

Claussnitzer M, Cho JH, Collins R et al. A brief history of human disease genetics // Nature. 2020;577(7789):179–189. doi:10.1038/s41586-019-1879-7

McCoy MS, Toole JJ, Cunningham JM et al. Characterization of a human colon/lung carcinoma oncogene // Nature. 1983;302(5903):79–81. doi:10.1038/302079a0

Semba K, Kamata N, Toyoshima K, Yamamoto T. A v-erbB-related protooncogene, c-erbB-2, is distinct from the c-erbB-1/epidermal growth factor-receptor gene and is amplified in a human salivary gland adenocarcinoma // Proc Natl Acad Sci USA. 1985;82(19):6497–501. doi:10.1073/pnas.82.19.6497

Yamazaki H, Fukui Y, Ueyama Y et al. Amplification of the structurally and functionally altered epidermal growth factor receptor gene (c-erbB) in human brain tumors // Mol Cell Biol. 1988;8(4):1816–1820. doi:10.1128/mcb.8.4.1816-1820.1988

Marx J. Medicine. Why a new cancer drug works well, in some patients. Science. 2004;304(5671):658–659. doi:10.1126/science.304.5671.658a

Saltz LB, Meropol NJ, Loehrer PJSr et al. Phase II trial of cetuximab in patients with refractory colorectal cancer that expresses the epidermal growth factor receptor // J Clin Oncol. 2004;22(7):1201–1208. doi:10.1200/JCO.2004.10.182

Baselga J, Rosen N. Determinants of RASistance to anti-epidermal growth factor receptor agents // J Clin Oncol. 2008;26(10):1582–4. doi:10.1200/JCO.2007.15.3700

Poon CC, Kelly JJ. Development of crizotinib, a rationally designed tyrosine kinase inhibitor for non-small cell lung cancer // Int J Cancer. 2017;140(9):1945–1954. doi:10.1002/ijc.30533

Herdeis L, Gerlach D, McConnell DB, Kessler D. Stopping the beating heart of cancer: KRAS reviewed // Curr Opin Struct Biol. 2021;71:136–147. doi:10.1016/j.sbi.2021.06.013

Mosele F, Remon J, Mateo J et al. Recommendations for the use of next-generation sequencing (NGS) for patients with metastatic cancers: a report from the ESMO Precision Medicine Working Group // Ann Oncol. 2020;31(11):1491–1505. doi:10.1016/j.annonc.2020.07.014

Imyanitov EN, Iyevleva AG, Levchenko EV. Molecular testing and targeted therapy for non-small cell lung cancer: Current status and perspectives // Crit Rev Oncol Hematol. 2021;157:103194. doi:10.1016/j.critrevonc.2020.103194

Shi Y, Au JS, Thongprasert S et al. A prospective, molecular epidemiology study of EGFR mutations in Asian patients with advanced non-small-cell lung cancer of adenocarcinoma histology (PIONEER) // J Thorac Oncol. 2014;9(2):154–162. doi:10.1097/JTO.0000000000000033

Reguart N, Remon J. Common EGFR-mutated subgroups (Del19/L858R) in advanced non-small-cell lung cancer: chasing better outcomes with tyrosine kinase inhibitors // Future Oncol. 2015;11(8):1245–1257. doi:10.2217/fon.15.15

Iyevleva AG, Mitiushkina NV, Karaseva NA et al. Lung carcinomas with EGFR exon 19 insertions are sensitive to gefitinib treatment // J Thorac Oncol. 2014;9(4):e31–3. doi:10.1097/JTO.0000000000000106

Koopman B, Cajiao Garcia BN, Kuijpers CCHJ et al. A Nationwide Study on the Impact of Routine Testing for EGFR Mutations in Advanced NSCLC Reveals Distinct Survival Patterns Based on EGFR Mutation Subclasses // Cancers (Basel). 2021;13(14):3641. doi:10.3390/cancers13143641

Syed YY. Amivantamab: First Approval // Drugs. 2021. doi:10.1007/s40265-021-01561-7

Yun J, Lee SH, Kim SY et al. Antitumor Activity of Amivantamab (JNJ-61186372), an EGFR-MET Bispecific Antibody, in Diverse Models of EGFR Exon 20 Insertion-Driven NSCLC // Cancer Discov. 2020;10(8):1194–1209. doi:10.1158/2159-8290.CD-20-0116

Lin L, Lu Q, Cao R et al. Acquired rare recurrent EGFR mutations as mechanisms of resistance to Osimertinib in lung cancer and in silico structural modelling // Am J Cancer Res. 2020;10(11):4005–4015.

Sun F, McCoach CE. Therapeutic Advances in the Management of Patients with Advanced RET Fusion-Positive Non-Small Cell Lung Cancer // Curr Treat Options Oncol. 2021;22(8):72. doi:10.1007/s11864-021-00867-8

Remon J, Pignataro D, Novello S, Passiglia F. Current treatment and future challenges in ROS1- and ALK-rearranged advanced non-small cell lung cancer // Cancer Treat Rev. 2021;95:102178. doi:10.1016/j.ctrv.2021.102178

Duruisseaux M, Besse B, Cadranel J et al. Overall survival with crizotinib and next-generation ALK inhibitors in ALK-positive non-small-cell lung cancer (IFCT-1302 CLINALK): a French nationwide cohort retrospective study // Oncotarget. 2017;8(13):21903–21917. doi:10.18632/oncotarget.15746

Orlov SV, Iyevleva AG, Filippova EA et al. Efficacy of lorlatinib in lung carcinomas carrying distinct ALK translocation variants: The results of a single-center study // Transl Oncol. 2021;14(8):101121. doi:10.1016/j.tranon.2021.101121

Socinski MA, Pennell NA, Davies KD. MET Exon 14 Skipping Mutations in Non-Small-Cell Lung Cancer: An Overview of Biology, Clinical Outcomes, and Testing Considerations // JCO Precis Oncol. 2021;5:PO.20.00516. doi:10.1200/PO.20.00516

Drilon A, Clark JW, Weiss J et al. Antitumor activity of crizotinib in lung cancers harboring a MET exon 14 alteration // Nat Med. 2020;26(1):47–51. doi:10.1038/s41591-019-0716-8

Wolf J, Seto T, Han JY et al. Capmatinib in MET Exon 14-Mutated or MET-Amplified Non-Small-Cell Lung Cancer // N Engl J Med. 2020;383(10):944–957. doi:10.1056/NEJMoa2002787

Dhillon S. Capmatinib: First Approval // Drugs. 2020;80(11):1125–1131. doi:10.1007/s40265-020-01347-3

Mitiushkina NV, Kholmatov MM, Venina AR et al. PCR-based detection of EGFR, ALK, KRAS and BRAF mutations in Russian patients with lung adenocarcinoma: a single-center experience // Neoplasma. 2018;65(6):972–979. doi:10.4149/neo_2018_171225N843

Hong DS, Fakih MG, Strickler JH et al. KRASG12C Inhibition with Sotorasib in Advanced Solid Tumors // N Engl J Med. 2020;383(13):1207–1217. doi:10.1056/NEJMoa1917239

Skoulidis F, Li BT, Dy GK et al. Sotorasib for Lung Cancers with KRAS p.G12C Mutation // N Engl J Med. 2021;384(25):2371–2381. doi:10.1056/NEJMoa2103695

Blair HA. Sotorasib: First Approval // Drugs. 2021. doi:10.1007/s40265-021-01574-2

Lamberti G, Andrini E, Sisi M et al. Beyond EGFR, ALK and ROS1: Current evidence and future perspectives on newly targetable oncogenic drivers in lung adenocarcinoma // Crit Rev Oncol Hematol. 2020;156:103119. doi:10.1016/j.critrevonc.2020.103119

Sveen A, Kopetz S, Lothe RA. Biomarker-guided therapy for colorectal cancer: strength in complexity // Nat Rev Clin Oncol. 2020;17(1):11–32. doi:10.1038/s41571-019-0241-1

Sepulveda AR, Hamilton SR, Allegra CJ et al. Molecular Biomarkers for the Evaluation of Colorectal Cancer: Guideline From the American Society for Clinical Pathology, College of American Pathologists, Association for Molecular Pathology, and the American Society of Clinical Oncology // J Clin Oncol. 2017;35(13):1453–1486. doi:10.1200/JCO.2016.71.9807

Douillard JY, Oliner KS, Siena S et al. Panitumumab-FOLFOX4 treatment and RAS mutations in colorectal cancer // N Engl J Med. 2013;369(11):1023–1034. doi:10.1056/NEJMoa1305275

Palmieri LJ, Mineur L, Tougeron D et al. Withholding the Introduction of Anti-Epidermal Growth Factor Receptor: Impact on Outcomes in RAS Wild-Type Metastatic Colorectal Tumors: A Multicenter AGEO Study (the WAIT or ACT Study) // Oncologist. 2020;25(2):e266–e275. doi:10.1634/theoncologist.2019-0328

Loree JM, Wang Y, Syed MA et al. Clinical and functional characterization of atypical KRAS/NRAS mutations in metastatic colorectal cancer // Clin Cancer Res. 2021:clincanres.CCR-21-0180-E.2021. doi:10.1158/1078-0432.CCR-21-0180

Volkov NM, Yanus GA, Ivantsov AO et al. Efficacy of immune checkpoint blockade in MUTYH-associated hereditary colorectal cancer // Invest New Drugs. 2020;38(3):894–898. doi:10.1007/s10637-019-00842-z

Aimé A, Coulet F, Lefevre JH et al. Somatic c.34G>T KRAS mutation: a new prescreening test for MUTYH-associated polyposis? // Cancer Genet. 2015;208(7–8):390–5. doi:10.1016/j.cancergen.2015.04.005

Yanus GA, Akhapkina TA, Ivantsov AO et al. Spectrum of APC and MUTYH germ-line mutations in Russian patients with colorectal malignancies // Clin Genet. 2018;93(5):1015–1021. doi:10.1111/cge.13228

Johnson B, Kopetz S. Applying Precision to the Management of BRAF-Mutant Metastatic Colorectal Cancer // Target Oncol. 2020;15(5):567–577. doi:10.1007/s11523-020-00747-5

Prahallad A, Sun C, Huang S et al. Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR // Nature. 2012;483(7387):100–103. doi:10.1038/nature10868

Kopetz S, Grothey A, Yaeger R et al. Encorafenib, Binimetinib, and Cetuximab in BRAF V600E-Mutated Colorectal Cancer // N Engl J Med. 2019;381(17):1632–1643. doi:10.1056/NEJMoa1908075

Nowak JA. HER2 in Colorectal Carcinoma: Are We There yet? // Surg Pathol Clin. 2020;13(3):485–502. doi:10.1016/j.path.2020.05.007

Gilson P, Merlin JL, Harlé A. Detection of Microsatellite Instability: State of the Art and Future Applications in Circulating Tumour DNA (ctDNA) // Cancers (Basel). 2021;13(7):1491. doi:10.3390/cancers13071491

Luchini C, Bibeau F, Ligtenberg MJL et al. ESMO recommendations on microsatellite instability testing for immunotherapy in cancer, and its relationship with PD-1/PD-L1 expression and tumour mutational burden: a systematic review-based approach // Ann Oncol. 2019;30(8):1232–1243. doi:10.1093/annonc/mdz116

Battaglin F, Naseem M, Lenz HJ, Salem ME. Microsatellite instability in colorectal cancer: overview of its clinical significance and novel perspectives // Clin Adv Hematol Oncol. 2018;16(11):735–745.

André T, Shiu KK, Kim TW et al. Pembrolizumab in Microsatellite-Instability-High Advanced Colorectal Cancer // N Engl J Med. 2020;383(23):2207–2218. doi:10.1056/NEJMoa2017699

Borg A, Tandon AK, Sigurdsson H et al. HER-2/neu amplification predicts poor survival in node-positive breast cancer // Cancer Res. 1990;50(14):4332–4337.

Murthy RK, Loi S, Okines A et al. Tucatinib, Trastuzumab, and Capecitabine for HER2-Positive Metastatic Breast Cancer // N Engl J Med. 2020;382(7):597–609. doi:10.1056/NEJMoa1914609

Exman P, Tolaney SM. HER2-positive metastatic breast cancer: a comprehensive review // Clin Adv Hematol Oncol. 2021;19(1):40–50.

Sauter G, Lee J, Bartlett JM et al. Guidelines for human epidermal growth factor receptor 2 testing: biologic and methodologic considerations // J Clin Oncol. 2009;27(8):1323–1333. doi:10.1200/JCO.2007.14.8197

Zhang H, Moisini I, Ajabnoor RM et al. Applying the New Guidelines of HER2 Testing in Breast Cancer // Curr Oncol Rep. 2020;22(5):51. doi:10.1007/s11912-020-0901-4

André F, Ciruelos E, Rubovszky G et al. Alpelisib for PIK3CA-Mutated, Hormone Receptor-Positive Advanced Breast Cancer // N Engl J Med. 2019;380(20):1929–1940. doi:10.1056/NEJMoa1813904

Pouptsis A, Swafe L, Patwardhan M, Stavraka C. Surgical and Systemic Treatment of Hereditary Breast Cancer: A Mini-Review With a Focus on BRCA1 and BRCA2 Mutations // Front Oncol. 2020;10:553080. doi:10.3389/fonc.2020.553080

Loibl S, Poortmans P, Morrow M et al. Breast cancer // Lancet. 2021;397(10286):1750–1769. doi:10.1016/S0140-6736(20)32381-3

Giugliano F, Crimini E, Tarantino P et al. First line treatment of BRAF mutated advanced melanoma: Does one size fit all? // Cancer Treat Rev. 2021;99:102253. doi:10.1016/j.ctrv.2021.102253

Hodi FS, Corless CL, Giobbie-Hurder A et al. Imatinib for melanomas harboring mutationally activated or amplified KIT arising on mucosal, acral, and chronically sun-damaged skin // J Clin Oncol. 2013;31(26):3182–3190. doi:10.1200/JCO.2012.47.7836

Lee SJ, Kim TM, Kim YJ et al. Phase II Trial of Nilotinib in Patients With Metastatic Malignant Melanoma Harboring KIT Gene Aberration: A Multicenter Trial of Korean Cancer Study Group (UN10-06) // Oncologist. 2015;20(11):1312–9. doi:10.1634/theoncologist.2015-0161

Kelly CM, Gutierrez Sainz L, Chi P. The management of metastatic GIST: current standard and investigational therapeutics // J Hematol Oncol. 2021;14(1):2. doi:10.1186/s13045-020-01026-6

Nishida T, Yoshinaga S, Takahashi T, Naito Y. Recent Progress and Challenges in the Diagnosis and Treatment of Gastrointestinal Stromal Tumors // Cancers (Basel). 2021;13(13):3158. doi:10.3390/cancers13133158

Heinrich MC, Jones RL, von Mehren M et al. Avapritinib in advanced PDGFRA D842V-mutant gastrointestinal stromal tumour (NAVIGATOR): a multicentre, open-label, phase 1 trial // Lancet Oncol. 2020;21(7):935–946. doi:10.1016/S1470-2045(20)30269-2

Romei C, Elisei R. A Narrative Review of Genetic Alterations in Primary Thyroid Epithelial Cancer // Int J Mol Sci. 2021;22(4):1726. doi:10.3390/ijms22041726

Brose MS, Cabanillas ME, Cohen EE et al. Vemurafenib in patients with BRAF(V600E)-positive metastatic or unresectable papillary thyroid cancer refractory to radioactive iodine: a non-randomised, multicentre, open-label, phase 2 trial // Lancet Oncol. 2016;17(9):1272–1282. doi:10.1016/S1470-2045(16)30166-8

Drilon A, Hu ZI, Lai GGY, Tan DSW. Targeting RET-driven cancers: lessons from evolving preclinical and clinical landscapes // Nat Rev Clin Oncol. 2018;15(3):151–167. doi:10.1038/nrclinonc.2017.175

Bradford D, Larkins E, Mushti SL et al. FDA Approval Summary: Selpercatinib for the Treatment of Lung and Thyroid Cancers with RET Gene Mutations or Fusions // Clin Cancer Res. 2021;27(8):2130–2135. doi:10.1158/1078-0432.CCR-20-3558

Bekaii-Saab TS, Bridgewater J, Normanno N. Practical considerations in screening for genetic alterations in cholangiocarcinoma // Ann Oncol. 2021:S0923–7534(21)01169-8. doi:10.1016/j.annonc.2021.04.012

Abou-Alfa GK, Sahai V, Hollebecque A et al. Pemigatinib for previously treated, locally advanced or metastatic cholangiocarcinoma: a multicentre, open-label, phase 2 study // Lancet Oncol. 2020;21(5):671–684. doi:10.1016/S1470-2045(20)30109-1

Rizzo A, Ricci AD, Brandi G. IDH inhibitors in advanced cholangiocarcinoma: Another arrow in the quiver? // Cancer Treat Res Commun. 2021;27:100356. doi:10.1016/j.ctarc.2021.100356

Abou-Alfa GK, Macarulla T, Javle MM et al. Ivosidenib in IDH1-mutant, chemotherapy-refractory cholangiocarcinoma (ClarIDHy): a multicentre, randomised, double-blind, placebo-controlled, phase 3 study // Lancet Oncol. 2020;21(6):796–807. doi:10.1016/S1470-2045(20)30157-1

Subbiah V, Lassen U, Élez E et al. Dabrafenib plus trametinib in patients with BRAFV600E-mutated biliary tract cancer (ROAR): a phase 2, open-label, single-arm, multicentre basket trial // Lancet Oncol. 2020;21(9):1234–1243. doi:10.1016/S1470-2045(20)30321-1

Silkin SV, Startsev SS, Krasnova ME et al. Complete Clinical Response of BRAF-Mutated Cholangiocarcinoma to Vemurafenib, Panitumumab, and Irinotecan // J Gastrointest Cancer. 2016;47(4):502–505. doi:10.1007/s12029-015-9792-2

Pal SK, Rosenberg JE, Hoffman-Censits JH et al. Efficacy of BGJ398, a Fibroblast Growth Factor Receptor 1–3 Inhibitor, in Patients with Previously Treated Advanced Urothelial Carcinoma with FGFR3 Alterations // Cancer Discov. 2018;8(7):812–821. doi:10.1158/2159-8290.CD-18-0229

Lyou Y, Grivas P, Rosenberg JE et al. Hyperphosphatemia Secondary to the Selective Fibroblast Growth Factor Receptor 1-3 Inhibitor Infigratinib (BGJ398) Is Associated with Antitumor Efficacy in Fibroblast Growth Factor Receptor 3-altered Advanced/Metastatic Urothelial Carcinoma // Eur Urol. 2020;78(6):916–924. doi:10.1016/j.eururo.2020.08.002

Jardim DL, Goodman A, de Melo Gagliato D, Kurzrock R. The Challenges of Tumor Mutational Burden as an Immunotherapy Biomarker // Cancer Cell. 2021;39(2):154–173. doi:10.1016/j.ccell.2020.10.001

Marabelle A, Fakih M, Lopez J et al. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study // Lancet Oncol. 2020;21(10):1353–1365. doi:10.1016/S1470-2045(20)30445-9

Adashek JJ, Subbiah V, Kurzrock R. From Tissue-Agnostic to N-of-One Therapies: (R)Evolution of the Precision Paradigm // Trends Cancer. 2021;7(1):15–28. doi:10.1016/j.trecan.2020.08.009

Wang X, Ricciuti B, Alessi JV et al. Smoking History as a Potential Predictor of Immune Checkpoint Inhibitor Efficacy in Metastatic Non-Small Cell Lung Cancer // J Natl Cancer Inst. 2021:djab116. doi:10.1093/jnci/djab116

Viel A, Bruselles A, Meccia E et al. Specific Mutational Signature Associated with DNA 8-Oxoguanine Persistence in MUTYH-defective Colorectal Cancer // EBioMedicine. 2017;20:39–49. doi:10.1016/j.ebiom.2017.04.022

Wang C, Gong J, Tu TY et al. Immune profiling of microsatellite instability-high and polymerase ε (POLE)-mutated metastatic colorectal tumors identifies predictors of response to anti-PD-1 therapy // J Gastrointest Oncol. 2018;9(3):404–415. doi:10.21037/jgo.2018.01.09

Iyevleva AG, Imyanitov EN. Cytotoxic and targeted therapy for hereditary cancers // Hered Cancer Clin Pract. 2016;14(1):17. doi:10.1186/s13053-016-0057-2

Ladan MM, van Gent DC, Jager A. Homologous Recombination Deficiency Testing for BRCA-Like Tumors: The Road to Clinical Validation // Cancers (Basel). 2021;13(5):1004. doi:10.3390/cancers13051004

Maxwell KN, Wubbenhorst B, Wenz BM et al. BRCA locus-specific loss of heterozygosity in germline BRCA1 and BRCA2 carriers // Nat Commun. 2017;8(1):319. doi:10.1038/s41467-017-00388-9

Jonsson P, Bandlamudi C, Cheng ML et al. Tumour lineage shapes BRCA-mediated phenotypes // Nature. 2019;571(7766):576–579. doi:10.1038/s41586-019-1382-1

Sokolenko AP, Gorodnova TV, Bizin IV et al. Molecular predictors of the outcome of paclitaxel plus carboplatin neoadjuvant therapy in high-grade serous ovarian cancer patients // Cancer Chemother Pharmacol. 2021;88(3):439–450. doi:10.1007/s00280-021-04301-6

Hyman DM, Puzanov I, Subbiah V et al. Vemurafenib in Multiple Nonmelanoma Cancers with BRAF V600 Mutations // N Engl J Med. 2015;373(8):726–36. doi:10.1056/NEJMoa1502309

Amodio V, Yaeger R, Arcella P et al. EGFR Blockade Reverts Resistance to KRAS(G12C) Inhibition in Colorectal Cancer // Cancer Discov. 2020;10(8):1129–1139. doi:10.1158/2159-8290.CD-20-0187

Stemer G, Rowe JM, Ofran Y. Efficacy and Safety Profile of Ivosidenib in the Management of Patients with Acute Myeloid Leukemia (AML): An Update on the Emerging Evidence // Blood Lymphat Cancer. 2021;11:41–54. doi:10.2147/BLCTT.S236446

Cerchione C, Romano A, Daver N et al. IDH1/IDH2 Inhibition in Acute Myeloid Leukemia // Front Oncol. 2021;11:639387. doi:10.3389/fonc.2021.639387

Pirozzi CJ, Yan H. The implications of IDH mutations for cancer development and therapy // Nat Rev Clin Oncol. 2021. doi:10.1038/s41571-021-00521-0

Ando Y, Iwasa S, Takahashi S et al. Phase I study of alpelisib (BYL719), an α-specific PI3K inhibitor, in Japanese patients with advanced solid tumors // Cancer Sci. 2019;110(3):1021–1031. doi:10.1111/cas.13923

Langer CJ, Redman MW, Wade JL et al. SWOG S1400B (NCT02785913), a Phase II Study of GDC-0032 (Taselisib) for Previously Treated PI3K-Positive Patients with Stage IV Squamous Cell Lung Cancer (Lung-MAP Sub-Study) // J Thorac Oncol. 2019;14(10):1839–1846. doi:10.1016/j.jtho.2019.05.029

Le DT, Durham JN, Smith KN et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade // Science. 2017;357(6349):409–413. doi:10.1126/science.aan6733

Marabelle A, Le DT, Ascierto PA et al. Efficacy of Pembrolizumab in Patients With Noncolorectal High Microsatellite Instability/Mismatch Repair-Deficient Cancer: Results From the Phase II KEYNOTE-158 Study // J Clin Oncol. 2020;38(1):1–10. doi:10.1200/JCO.19.02105

Roviello G, D'Angelo A, Sciortino M et al. TRK fusion positive cancers: From first clinical data of a TRK inhibitor to future directions // Crit Rev Oncol Hematol. 2020;152:103011. doi:10.1016/j.critrevonc.2020.103011

Rohrberg KS, Lassen U. Detecting and Targeting NTRK Fusions in Cancer in the Era of Tumor Agnostic Oncology // Drugs. 2021;81(4):445–452. doi:10.1007/s40265-020-01459-w

de Salins V, Loganadane G, Joly C et al. Complete response in anaplastic lymphoma kinase-rearranged oncocytic thyroid cancer: A case report and review of literature // World J Clin Oncol. 2020;11(7):495–503. doi:10.5306/wjco.v11.i7.495

Preobrazhenskaya EV, Iyevleva AG, Suleymanova AM et al. Gene rearrangements in consecutive series of pediatric inflammatory myofibroblastic tumors // Pediatr Blood Cancer. 2020;67(5):e28220. doi:10.1002/pbc.28220

Garcia-Pardo M, Ortega L, Fernández-Aceñero MJ et al. Molecular Profiling and Targeted Therapy in Cholangiocarcinoma: An Observational, Retrospective Multicenter Study // J Gastrointest Cancer. 2021;52(2):814–818. doi:10.1007/s12029-021-00622-0

Robertson SJ, Orme L, Teixeira R et al. Evaluation of Crizotinib Treatment in a Patient With Unresectable GOPC-ROS1 Fusion Agminated Spitz Nevi // JAMA Dermatol. 2021;157(7):836–841. doi:10.1001/jamadermatol.2021.0025

Cabel L, Fuerea A, Lacroix L et al. Efficacy of histology-agnostic and molecularly-driven HER2 inhibitors for refractory cancers // Oncotarget. 2018;9(11):9741–9750. doi:10.18632/oncotarget.24188

Takahashi K, Ishibashi E, Kubo T et al. A phase 2 basket trial of combination therapy with trastuzumab and pertuzumab in patients with solid cancers harboring human epidermal growth factor receptor 2 amplification (JUPITER trial) // Medicine (Baltimore). 2020;99(32):e21457. doi:10.1097/MD.0000000000021457

Massard C, Michiels S, Ferté C et al. High-Throughput Genomics and Clinical Outcome in Hard-to-Treat Advanced Cancers: Results of the MOSCATO 01 Trial // Cancer Discov. 2017;7(6):586–595. doi:10.1158/2159-8290.CD-16-1396

Rodon J, Soria JC, Berger R et al. Genomic and transcriptomic profiling expands precision cancer medicine: the WINTHER trial // Nat Med. 2019;25(5):751–758. doi:10.1038/s41591-019-0424-4

Sicklick JK, Kato S, Okamura R et al. Molecular profiling of cancer patients enables personalized combination therapy: the I-PREDICT study // Nat Med. 2019;25(5):744–750. doi:10.1038/s41591-019-0407-5

Kato S, Kim KH, Lim HJ et al. Real-world data from a molecular tumor board demonstrates improved outcomes with a precision N-of-One strategy // Nat Commun. 2020;11(1):4965. doi:10.1038/s41467-020-18613-3

Wheler JJ, Janku F, Naing A et al. TP53 Alterations Correlate with Response to VEGF/VEGFR Inhibitors: Implications for Targeted Therapeutics // Mol Cancer Ther. 2016;15(10):2475–2485. doi:10.1158/1535-7163.MCT-16-0196

Li AM, Boichard A, Kurzrock R. Mutated TP53 is a marker of increased VEGF expression: analysis of 7,525 pan-cancer tissues // Cancer Biol Ther. 2020;21(1):95–100. doi:10.1080/15384047.2019.1665956

Shirdarreh M, Aziza O, Pezo RC et al. Patients' and Oncologists' Knowledge and Expectations Regarding Tumor Multigene Next-Generation Sequencing: A Narrative Review // Oncologist. 2021. doi:10.1002/onco.13783

Blum A, Wang P, Zenklusen JC. SnapShot: TCGA-Analyzed Tumors // Cell. 2018;173(2):530. doi:10.1016/j.cell.2018.03.059

ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole genomes // Nature. 2020;578(7793):82–93. doi:10.1038/s41586-020-1969-6

Li Y, Roberts ND, Wala JA et al. Patterns of somatic structural variation in human cancer genomes // Nature. 2020;578(7793):112–121. doi:10.1038/s41586-019-1913-9

Vogelstein B, Papadopoulos N, Velculescu VE et al. Cancer genome landscapes //Science.2013;339(6127):1546–1558. doi:10.1126/science.1235122

Faubert B, Solmonson A, DeBerardinis RJ. Metabolic reprogramming and cancer progression // Science. 2020;368(6487):eaaw5473. doi:10.1126/science.aaw5473

Irmisch A, Bonilla X, Chevrier S et al. The Tumor Profiler Study: integrated, multi-omic, functional tumor profiling for clinical decision support // Cancer Cell. 2021;39(3):288–293. doi:10.1016/j.ccell.2021.01.004

Lennon AM, Buchanan AH, Kinde I et al. Feasibility of blood testing combined with PET-CT to screen for cancer and guide intervention // Science. 2020;369(6499):eabb9601. doi:10.1126/science.abb9601

Aleksakhina SN, Kashyap A, Imyanitov EN. Mechanisms of acquired tumor drug resistance // Biochim Biophys Acta Rev Cancer. 2019;1872(2):188310. doi:10.1016/j.bbcan.2019.188310

Mueller KL, Theoret MR, Lemery SJ et al. Neoadjuvant Therapy for Melanoma: A U.S. Food and Drug Administration-Melanoma Research Alliance Public Workshop // Clin Cancer Res. 2021;27(2):394–401. doi:10.1158/1078-0432.CCR-20-3285

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

© АННМО «Вопросы онкологии», Copyright (c) 2021