Vascular mechanisms in the radiobiological effects from high-dose radiotherapy (literature review)
pdf (Русский)

Keywords

review
radiobiology
high-dose irradiation
vascular endothelial apoptosis
vascular
immune and non-targeted of irradiation

How to Cite

Аrseniev А., Novikov, S., Kanaev, S., Arsenyev, E., Tarkov , S., Barchuk , A., Melnik, Y., Nefedov , A., Novikov, R., Zozulya , A., Gagua , K., Aristidov , N., Antipov , F., Merezhko , Y., & Ilyin , N. (2023). Vascular mechanisms in the radiobiological effects from high-dose radiotherapy (literature review). Voprosy Onkologii, 69(2), 180–186. https://doi.org/10.37469/0507-3758-2023-69-2-180-186

Abstract

The literature review describes the importance of vascular mechanisms in the implementation of radiobiological effects of high-dose radiation therapy. The basic concepts of radiobiology can be reduced to several closely interrelated models: linear-quadratic, vascular, immune and nontarget. Each of them describes its own link of the cumulative response to the irradiation, and their role and contribution vary depending, first of all, on single doses, and then on fractionation modes and total doses. The accumulated data indicate the expediency of forming a single generalizing model.

The vascular network is important in the proliferation and survival of tumor cells, largely determining the conditions of the microenvironment and the overall response to radiation therapy. High radiation doses per fraction (more than 10 GY) lead to vascular endothelial apoptosis, immediate severe vascular reaction and deep tumor ischemia. This phenomenon is associated with the activation of acidic sphingomyelinase, followed by hydrolysis of sphingomyelin, which generates ceramide, inducing a transmembrane signal of apoptosis.

https://doi.org/10.37469/0507-3758-2023-69-2-180-186
pdf (Русский)

References

Qiu B, Aili A, Xue L. et al. Advances in radiobiology of stereotactic ablative radiotherapy. Front Oncol. 2020;7(10):1165. doi:10.3389/fonc.2020.01165.

Vaughan A, Rao SD. Radiobiology of stereotactic radiosurgery and stereotactic body radiotherapy. In: Sethi RA, Barani, IJ, Larson DA, Roach III M, editors. Handbook of Evidence-Based Stereotactic Radiosurgery and Stereotactic Body Radiotherapy. Cham (Switzerland): Springer. 2016:11-19. doi:10.1007/978-3-319-21897-7.

Beyzadeoglu M, Ozyigit G, Ebruli C. Basic Radiation Oncology. Berlin: Springer; 2010: 575. doi:10.1007/978-3-642-11666-7.

Joiner MC, van der Kogel AJ. et al. Basic Clinical Radiobiology. 5th ed. CRC Press, Taylor and Francis Group. 2018; 360. Available from: https://doi.org/10.1201/9780429490606.

Trifiletti DM, Chao ST, Sahgal A. et al. Stereotactic radiosurgery and stereotactic body radiation therapy. Switzerland AG: Springer Nature; 2019: 435. doi:10.1007/978-3-030-16924-4.

Zeman EM. The history and radiobiology of hypofractionation. In: Kaidar-Person O, Chen RC, editors. Hypofractionated and stereotactic radiation therapy: a practical guide. Cham (Switzerland): Springer International Publishing AG, 2018:1-31. doi:10.1007/978-3-319-92802-9.

Kirkpatrick JP, Soltys SG, Lo SS. et al. The radiosurgery fractionation quandary: single fraction or hypofractionation? Neuro-Oncology [Internet]. 2017;19(2):38-49. doi:10.1093/neuonc/now301.

Emami B, Lyman J, Brown A. et al. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys [Internet]. 1991;21(1):109-22. doi:10.1016/0360-3016(91)90171-y.

Desideri I, Loi M, Francolini G. et al. Application of radiomics for the prediction of radiation-induced toxicity in the IMRT era: current state-of-the-art. frontiers in oncology [Internet]. 2020;10: 1708. doi:10.3389/fonc.2020.01708.

Yang Y, Deng L, Yang Y. et al. Efficacy and safety of combined brain radiotherapy and immunotherapy in non-small-cell lung cancer with brain metastases: a systematic review and meta-analysis. Clinical Lung Cancer [Internet]. 2022;23(2):95-107. doi:10.1016/j.cllc.2021.06.009.

Ministro A, de Oliveira P, Nunes RJ. et al. Low-dose ionizing radiation induces therapeutic neovascularization in a pre-clinical model of hindlimb ischemia. Cardiovascular Research [Internet]. 2017;113(7):783-94. doi:10.1093/cvr/cvx065.

Song CW, Park HJ, Griffin RJ, Levitt SH. Radiobiology of stereotactic radiosurgery and stereotactic body radiation therapy. In: Levitt SH, Purdy JA, Perez CA, Poortmans P, editors. Technical basis of radiation therapy: practical clinical applications. 5th ed. Heidelberg: Springer; 2012: 51-61. doi:10.1007/174_2011_264.

Truman JP, García-Barros M, Kaag M. et al. Endothelial membrane remodeling is obligate for anti-angiogenic radiosensitization during tumor radiosurgery. PLoS One. 2010;5(9). doi: 10.1371/annotation/6e222ad5-b175-4a00-9d04-4d120568a897.

Sherwood LM, Parris EE, Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med. 1971;285(21):1182-6. doi:10.1056/nejm197111182852108.

Krock BL, Skuli N, Simon MC. Hypoxia-Induced Angiogenesis: Good and Evil. Genes & Cancer. 2011;2(12):1117-33. doi:10.1177/1947601911423654.

Kleibeuker EA, Griffioen AW, Verheul HM. et al. Combining angiogenesis inhibition and radiotherapy: A double-edged sword. Drug Resist Updat. 2012;15(3):173-82. doi:10.1016/j.drup.2012.04.002.

Zhang S, Zhang D, Sun B. Vasculogenic mimicry: Current status and future prospects. Cancer Letters. 2007;254(2):157-64. doi:10.1016/j.canlet.2006.12.036.

Hillen F, Griffioen AW. Tumour vascularization: sprouting angiogenesis and beyond. Cancer Metastasis Rev. 2007;26(3-4):489-502. doi:10.1007/s10555-007-9094-7.

Mottram JC. A factor of importance in the radio sensitivity of tumours. Br. J. Radiol. 1936;9(105):606-14. doi:10.1259/0007-1285-9-105-606.

García-Barros M, Thin TH, Maj J. et al. Impact of stromal sensitivity on radiation response of tumors implanted in SCID hosts revisited. Cancer Res. 2010;70(20):8179-86. doi:10.1158/0008-5472.can-10-1871.

Park HJ, Griffin RJ, Hui S. et al. Radiation-induced vascular damage in tumors: implications of vascular damage in ablative hypofractionated radiotherapy (SBRT and SRS). Radiat Res. 2012;177(3):311-27. doi:10.1667/rr2773.1.

Fuks Z, Kolesnick R. Engaging the vascular component of the tumor response. Cancer Cell. 2005;8(2):89-91. doi:10.1016/j.ccr.2005.07.014.

Kumar KA, Peck KK, Karimi S. et al. A pilot study evaluating the use of dynamic contrast-enhanced perfusion MRI to predict local recurrence after radiosurgery on spinal metastases. Technol Cancer Res Treat. 2017;16(6):857-65. doi:10.1177/1533034617705715.

Rani V, Prabhu A. Combining Angiogenesis Inhibitors with Radiation: Advances and Challenges in Cancer Treatment. Curr Pharm Des. 2021;27(7):919-31. doi:10.2174/1381612826666201002145454.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

© АННМО «Вопросы онкологии», Copyright (c) 2023