Abstract
Introduction. Microsatellite instability (MSI), a consequence of defective in DNA mismatch repair (dMMR), is manifested by multiple mutations. This phenomenon is particularly common in colorectal tumors, gastric cancer, endometrial cancer, etc. MSI in tumors is often associated with activation of the MAPK pathway, for example with mutations in the KRAS, NRAS and BRAF genes. Recent studies have shown that drugs targeting ALK, ROS1, RET and NTRK1-3 tyrosine kinase translocations occur in tumors with microsatellite instability.
Aim. To study the frequency and spectrum of activating tyrosine kinase translocations in microsatellite unstable tumors of different localization.
Materials and methods. MSI status was determined for 27,408 neoplasms. Detection of rearrangements involving the ALK, ROS1, RET and NTRK1-3 genes in 1,284 samples of MSI-positive tumors was performed using the 5'-3'-end unbalanced expression test, variant-specific PCR and high-throughput RNA next-generation sequencing (RNA-NGS).
Results. Gene fusions were detected in 101/990 (10.2 %) colorectal cancers, 1/108 (1 %) gastric cancers (ALK: 11; RET: 25; NTRK1: 42; NTRK2: 2; NTRK3: 22). These alterations were not observed in endometrial (n = 157), cervical (n = 13), pancreatic (n = 7), cholangiocarcinoma (n = 4) or ovarian (n = 5) cancers. The highest frequency of gene rearrangements was observed in KRAS/NRAS/BRAF-negative colorectal cancer with MSI 93/395 (23.5 %). Much less frequent rearrangements were found in colorectal cancers with KRAS/NRAS/BRAF mutations (8/597, 1.3 %). Patients with colorectal cancer over 50 years of age had a higher frequency of translocations compared to younger patients (97/795 (12.2 %) vs. 3/195 (1.5 %), p = 0.0002).
Conclusion. Tyrosine kinase gene translocations occur with significant frequency in MSI-positive colorectal cancer, especially in KRAS/NRAS/BRAF wild-type tumors.
References
Shia J. The diversity of tumours with microsatellite instability: molecular mechanisms and impact upon microsatellite instability testing and mismatch repair protein immunohistochemistry. Histopathology. 2021; 78(4): 485-497.-DOI: https://doi.org/10.1111/his.14271.
Wang J., Li R., Li J., et al. Comprehensive analysis of oncogenic fusions in mismatch repair deficient colorectal carcinomas by sequential DNA and RNA next generation sequencing. J Transl Med. 2021; 19(1): 433.-DOI: https://doi.org/10.1186/s12967-021-03108-6.
Gallon R., Gawthorpe P., Phelps R.L., et al. How should we test for lynch syndrome? A review of current guidelines and future strategies. Cancers (Basel). 2021; 13(3): 406.-DOI: https://doi.org/10.3390/cancers13030406.
Taieb J., Svrcek M., Cohen R., et al. Deficient mismatch repair/microsatellite unstable colorectal cancer: Diagnosis, prognosis and treatment. Eur J Cancer. 2022; 175: 136-157:-DOI: https://doi.org/10.1016/j.ejca.2022.07.020.
Eso Y., Shimizu T., Takeda H., et al. Microsatellite instability and immune checkpoint inhibitors: toward precision medicine against gastrointestinal and hepatobiliary cancers. J Gastroenterol. 2020; 55(1): 15-26.-DOI: https://doi.org/10.1007/s00535-019-01620-7.
Jin Z., Sinicrope F.A. Mismatch repair-deficient colorectal cancer: building on checkpoint blockade. J Clin Oncol. 2022; 40(24): 2735-2750.-DOI: https://doi.org/10.1200/JCO.21.02691.
Imyanitov E., Kuligina E. Molecular testing for colorectal cancer: Clinical applications. World J Gastrointest Oncol. 2021; 13(10): 1288-1301.-DOI: https://doi.org/10.4251/wjgo.v13.i10.1288.
Vaňková B., Vaněček T., Ptáková N., et al. Targeted next generation sequencing of MLH1-deficient, MLH1 promoter hypermethylated, and BRAF/RAS-wild-type colorectal adenocarcinomas is effective in detecting tumors with actionable oncogenic gene fusions. Genes Chromosomes & Cancer. 2020; 59(10): 562-568.-DOI: https://doi.org/10.1002/gcc.22861.
Bocciarelli C., Caumont C., Samaison L., et al. MSI-High RAS-BRAF wild-type colorectal adenocarcinomas with MLH1 loss have a high frequency of targetable oncogenic gene fusions whose diagnoses are feasible using methods easy-to-implement in pathology laboratories. Hum Pathol. 2021; 114: 99-109.-DOI: https://doi.org/10.1016/j.humpath.2021.05.006.
Singh H., Li Y.Y., Spurr L.F., et al. Molecular characterization and therapeutic targeting of colorectal cancers harboring receptor tyrosine kinase fusions. Clin Cancer Res. 2021; 27(6): 1695-1705.-DOI: https://doi.org/10.1158/1078-0432.CCR-20-4073.
Madison R.W., Hu X., Ramanan V., et al. Clustered 8-oxo-guanine mutations and oncogenic gene fusions in microsatellite-unstable colorectal cancer. JCO Precis Oncol. 2022: 6: e2100477.-DOI: https://doi.org/10.1200/PO.21.00477.
Okano S., Yamashiro Y., Onagi H., et al. Tyrosine kinase alterations in colorectal cancer with emphasis on the distinct clinicopathological characteristics. Histopathology. 2023; 83(5): 733-742.-DOI: https://doi.org/10.1111/his.15015.
Kurnit K.C., Westin S.N., Coleman R.L. Microsatellite instability in endometrial cancer: New purpose for an old test. Cancer. 2019; 125(13): 2154-2163.-DOI: https://doi.org/10.1002/cncr.32058.
Puliga E., Corso S., Pietrantonio F., et al. Microsatellite instability in gastric cancer: between lights and shadows. Cancer Treat Rev. 2021; 95: 102175.-DOI: https://doi.org/10.1016/j.ctrv.2021.102175.
Preobrazhenskaya E.V., Suleymanova A.M., Bizin I.V., et al. Spectrum of kinase gene rearrangements in a large series of paediatric inflammatory myofibroblastic tumours. Histopathology. 2023; 83(1): 109-115.-DOI: https://doi.org/10.1111/his.14912.
Tiurin V.I., Preobrazhenskaya E.V., Mitiushkina N.V., et al. Rapid and cost-efficient detection of RET rearrangements in a large consecutive series of lung carcinomas. Int J Mol Sci. 2023; 24(13): 10530.-DOI: https://doi.org/10.3390/ijms241310530.
Martianov A.S., Mitiushkina N.V., Ershova A.N., et al. KRAS, NRAS, BRAF, HER2 and MSI status in a large consecutive series of colorectal carcinomas. Int J Mol Sci. 2023; 24(5): 4868.-DOI: https://doi.org/10.3390/ijms24054868.
Zhou X.P., Hoang J.M., Li Y.J., et al. Determination of the replication error phenotype in human tumors without the requirement for matching normal DNA by analysis of mononucleotide repeat microsatellites. Genes Chromosomes & Cancer. 1998; 21: 101-107.-DOI: https://doi.org/10.1002/(sici)1098-2264(199802)21:2<101::aid-gcc4>3.0.co;2-4.
Suraweera N., Duval A., Reperant M., et al. Evaluation of tumor microsatellite instability using five quasimonomorphic mononucleotide repeats and pentaplex PCR. Gastroenterology. 2002; 123: 1804-1811.-DOI: https://doi.org/10.1053/gast.2002.37070.
Afrăsânie V.A., Gafton B., Marinca M.V., et al. The coexistence of RAS and BRAF mutations in metastatic colorectal cancer: a case report and systematic literature review. J Gastrointestin Liver Dis. 2020; 29(2): 251-256.-DOI: https://doi.org/10.15403/jgld-1003.
Uchida S., Kojima T., Sugino T. Frequency and clinicopathological characteristics of patients with KRAS/BRAF double-mutant colorectal cancer: an in silico study. Pathol Oncol Res. 2022; 28: 1610206.-DOI: https://doi.org/10.3389/pore.2022.1610206.
Mustachio L.M., Roszik J. Single-cell sequencing: current applications in precision onco-genomics and cancer therapeutics. Cancers (Basel). 2022; 14(3): 657.-DOI: https://doi.org/10.3390/cancers14030657.
O'Haire S., Franchini F., Kang, Y.J., et al. Systematic review of NTRK 1/2/3 fusion prevalence pan-cancer and across solid tumours. Sci Rep. 2023; 13: 4116.-DOI: https://doi.org/10.1038/s41598-023-31055-3.
Romanko A.A., Mulkidjan R.S., Tiurin V.I., et al. Cost-efficient detection of NTRK1/2/3 gene fusions: single-center analysis of 8075 tumor samples. Int J Mol Sci. 2023; 24(18): 14203.-DOI: https://doi.org/10.3390/ijms241814203.
Fois S.S., Paliogiannis P., Zinellu A., et al. Molecular epidemiology of the main druggable genetic alterations in non-small cell lung cancer. Int J Mol Sci. 2021; 22(2): 612.-DOI: https://doi.org/10.3390/ijms22020612.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
© АННМО «Вопросы онкологии», Copyright (c) 2025