The Non-Targeted Abscopal Effect in High Dose-Rate Radiobiology
##article.numberofdownloads## 166
##article.numberofviews## 214
pdf (Русский)

Keywords

review
radiobiology
high-dose radiation
stereotactic radiation therapy
abscopal effect
vascular
immune and non-target radiation models
bystander effect
immunotherapy

How to Cite

Arseniev , A., Novikov, S., Kanaev , S., Arseniev, E., Tarkov, S., Barchuk, A., Melnik, Y., Nefedov, A., Novikov, R., Zozulya, A., Aristidov, N., Antipov, F., Merezhko, Y., Ilyin, N., Bryantseva, Z., & Akulova , I. (2023). The Non-Targeted Abscopal Effect in High Dose-Rate Radiobiology. Voprosy Onkologii, 69(4), 605–615. https://doi.org/10.37469/0507-3758-2023-69-4-605-615

Abstract

During the response to ionizing radiation, several mechanisms interact, including direct damage of DNA, vascular endothelial cell apoptosis, immune cell death, and the development of non-target effects. The contribution of each of these mechanisms to the overall biological response varies depending on the radiation regimen, and primary on the dose per fraction. At high-dose irradiation and significant doses per fraction, indirect (vascular, immune, and non-targeted) tumor cell death becomes of primary importance. Non-targeted radiobiological effects, observed in cells and tissues not directly exposed to ionizing radiation, are insufficiently studied, exhibit poor predictability, and have garnered growing interest among researchers. These effects contribute to the evolving concept of modern radiobiology and can be comprehensively studied through the interrelation of three main models: linear-quadratic, vascular, and immune. The non-targeted abscopal effect, including its specific manifestation, known as the "bystander effect," involve the transmission of radiation signals (primarily apoptosis) from irradiated to non-irradiated cells via intercellular contacts and mediator secretion. This occurs due to intense immune system stimulation caused by massive expression of tumor antigens. Non-targeted effects can have both positive (radioprotective) and more commonly negative (radiosensitizing) influences. The low frequency of abscopal effects is partly attributed to the suppressive influence of the tumor microenvironment. Understanding the mechanisms behind these radiobiological phenomena facilitates exploring and implementing combined approaches involving radiation, immunotherapy, and chemotherapy to achieve synergistic effects.

https://doi.org/10.37469/0507-3758-2023-69-4-605-615
##article.numberofdownloads## 166
##article.numberofviews## 214
pdf (Русский)

References

Joiner MC, van der Kogel AJ, eds. Basic clinical radiobiology. Taylor & Francis Group. 2018;(5):360. doi:10.1201/9780429490606.

Климанов В.А. Радиобиологическое и дозиметрическое планирование лучевой и радионуклидной терапии. Радиобиологические основы лучевой терапии. Радиобиологическое и дозиметическое планирование дистанционной лучевой терапии пучками тормозного и гамма-излучения и электронами. Учебное пособие. НИЯУ МИФИ. 2011:500 [Klimanov VA. Radiobiological and dosimetric planning of radiation and radionuclide therapy. Radiobiological bases of radiation therapy. Radiobiological and dosimetric planning of remote radiation therapy with beams of inhibitory and gamma radiation and electrons. Klimanov VA. Tutorial. NRNU MEPhI. 2011:500 (In Russ.)].

Steel GG, McMillan TJ, Peacock JH. The 5Rs of radiobiology. Int J Radiat Biol. 1989;56(6):1045-8. doi:10.1080/09553008914552491.

Qiu B, Aili A, Xue L, et al. Advances in radiobiology of stereotactic ablative radiotherapy. Front Oncol. 2020;10:1165. doi:10.3389/fonc.2020.01165.

Chadwick KH, Leenhouts HP. The molecular theory of radiation biology. Berlin. Heidelberg: Springer-Verlag. 1981:394.

Ballarini F. From DNA Radiation Damage to Cell Death: Theoretical Approaches. J Nucleic Acids. 2010;2010:1–8. doi:10.4061/2010/350608.

Борщеговская П.Ю. Взаимодействие ионизирующего излучения с веществом. П.Ю. Борщеговская, В.В. Розанов, Ф.Р. Студеникин. Учебное пособие — М.: ООП физического факультета МГУ. 2019:78 [Borshchegovskaya PYu. Interaction of ionising radiation with matter. Borshchegovskaya PYu, Rozanov VV, Studenikin FR. Tutorial. М.: OOP of the Physics Department of MSU. Rozanov, F.R. Studenikin. Tutorial. M.: Basic Academic Program of the Faculty of Physics, Moscow State University. 2019:78 (In Russ.)]

Tanksley J, Salama JK, Kirkpatrick JP. Rationale for fractionated SRS and single SRS session approaches. In: Stereotactic Radiosurgery and Stereotactic Body Radiation Therapy. Trifiletti DM, Chao ST, Sahgal A, Sheehan JP, eds. Springer Nature Switzerland AG; 2019:31-40.

Zeman EM. The history and radiobiology of hypofractionation. In: Hypofractionated and Stereotactic Radiation Therapy: A Practical Guide. Kaidar-Person O, Chen RC, eds. Springer International Publishing AG, Cham, Switzerland. 2018:1-31.

Brown JM, Diehn M, Loo BW Jr. Stereotactic ablative radiotherapy should be combined with a hypoxic cell radiosensitizer. Int J Radiat Oncol Biol Phys. 2010;78(2):323-7. doi:10.1016/j.ijrobp.2010.04.070.

Wang JZ, Huang Z, Lo SS, et al. A generalized linear-quadratic model for radiosurgery, stereotactic body radiation therapy, and high-dose rate brachytherapy. Sci Transl Med. 2010;2(39):39ra48. doi:10.1126/scitranslmed.3000864.

Арсеньев А.И., Новиков С.Н., Канаев С.В. и др. Линейно-квадратичная модель в описании механизмов высокодозной лучевой терапии. Вопросы онкологии. 2022;68(6):717-724 [Arseniev A, Kanaev S, Arseniev E, et al. Linear-quadratic model in the description of the mechanisms of high-dose radiation therapy. Voprosy Onkologii. 2022;68(6):717–24 (In Russ.)]. doi:10.37469/0507-3758-2022-68-6-717-724.

Vaughan A, Rao SSD. Radiobiology of stereotactic radiosurgery and stereotactic body radiotherapy. In: Sethi RA, Barani IJ, Larson DA, Roach M, eds. Handbook of evidence-based stereotactic radiosurgery and stereotatic body radiotherapy. Springer, Switzerland. 2016:11-19. doi:10.1007/978-3-319-21897-7.

Bergonié J, Tribondeau L. Interpretation of some results from radiotherapy and an attempt to determine a rational treatment technique. 1906. Yale J Biol Med. 2003;76(4-6):181-2.

Beyzadeoglu M, Ozyigit G, Ebruli C. Basic radiation oncology. Springer, Berlin, Heidelberg. 2020:575. doi:10.1007/978-3-642-11666-7.

Yamada Y, Bilsky MH, Lovelock DM, et al. High-dose, single-fraction image-guided intensity-modulated radiotherapy for metastatic spinal lesions. Int J Radiat Oncol Biol Phys. 2008;71(2):484-90. doi:10.1016/j.ijrobp.2007.11.046.

Fuks Z, Kolesnick R. Engaging the vascular component of the tumor response. Cancer Cell. 2005;8(2):89-91. doi:10.1016/j.ccr.2005.07.014.

Withers HR. Biologic basis for altered fractionation schemes. Cancer. 1985;55(9 Suppl):2086-95. doi:10.1002/1097-0142(19850501)55:9.

Deacon J, Peckham MJ, Steel GG. The radioresponsiveness of human tumours and the initial slope of the cell survival curve. Radiother Oncol. 1984;2(4):317-23. doi:10.1016/s0167-8140(84)80074-2.

Смирнова М.В. Механизмы, роли и перспективы учета эффекта свидетеля в радиобиологии и медицине. Естественные и технические науки. 2019;(6):159-164 [Smirnova MV. Mechanisms, roles and potential in taking into account the bystander effect in radiobiology and medicine Natural and technical sciences. 2019;(6):159-64 (In Russ.)].

Литтл Д.Б. Немишенные эффекты ионизирующих излучений: выводы применительно к низкодозовым воздействиям. Радиационная биология. Радиоэкология. 2007;47(3):262-272 [Little DB. Radiation-induced non-targeted effects: conclusions in relation to low-dose effects. Radiation Biology. Radioecology. 2007;47(3):262-72 (In Russ.)].

Пелевина И.И., Петушкова В.В., Бирюков В.А. и др. Роль «немишенных эффектов» в реакции клеток человека на радиационное воздействие. Радиационная биология. Радиоэкология. 2019;59(3):261–73 [Pelevina II. The role of “non-targeted effect” in the reaction of human cells to radiation exposure. In: Petushkova VV, Biryukov VA, et al. Radiation Biology. Radioecology. 2019;59(3):261–73 (In Russ.)].

United Nations. UNSCEAR 2006. Report to the General Assembly, with Scientific Annexes. Annex C. Non-targeted and delayed effects of exposure to ionizing radiation. United Nations; New York. 2009:1-79.

Parsons WB Jr, Watkins CH, Pease GL, et al. Changes in sternal marrow following roentgen-ray therapy to the spleen in chronic granulocytic leukemia. Cancer. 1954;7(1):179-89. doi:10.1002/1097-0142(195401)7:1<179::aid-cncr2820070120>3.0.co;2-a.

Demaria S, Ng B, Devitt ML, et al Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int J Radiat Oncol Biol Phys. 2004;58(3):862-70. doi:10.1016/j.ijrobp.2003.09.012.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

© АННМО «Вопросы онкологии», Copyright (c) 2023