摘要
Первичные опухоли могут метастазировать почти во все ткани организма, но некоторые опухоли, такие как рак молочной железы, рак предстательной железы, рак легких, рак щитовидной железы и рак почки преимущественно метастазируют в кости. Кость является третьей по частоте локализации метастазирования после легких и печени. Клинические проявления костных метастазов включают боль, снижение подвижности, патологические переломы и т. д., которые в совокупности называются событиями, связанными со скелетом (skeletal-related events, SREs). Появление метастазов в кости ухудшает качество жизни пациентов и сокращают период выживаемости. В настоящее время, механизм метастазирования опухолевых клеток в кости не полностью ясен. Последние исследования показывают, что возникновение вторичных изменений в скелете связано с характеристикой опухолевых клеток, костным микроокружением и взаимодействием между ними. В данном литературном обзоре проведён анализ различных видов метастазов в кости, характеристик опухолевых клеток, специфичности костного микроокружения и взаимодействие между ними, что может обеспечить теоретическую основу для поиска новых подходов в профилактике и лечении костных метастазов. Для подготовки обзора проведен поиск литературы по базам данных Scopus, Web of Science, Medline, PubMed, CyberLeninka, РИНЦ и CNKI. При анализе использованы источники, индексируемые в базах данных Scopus и Web of Science (93%), РИНЦ и CNKI (7%). Более 50% работ опубликовано за последние 5 лет. Использовано 83 источника для написания данного литературного обзора.
参考
Suva LJ, Washam C, Nicholas RW et al. Bone metastasis: mechanisms and therapeutic opportunities // Nat Rev Endocrinol. 2011;7(4):208–18. doi:10.1038/nrendo.2010.227
Ван Ц., Харченко Н.В. Сравнительный анализ хирургических вмешательствв лечении пациентов с метастатическим поражением бедренной кости в сочетании с патологическими переломами // Вестник РУДН. Серия: Медицина. 2020;24(3):237–244. doi:10.22363/2313-0245-2020-24-3-237-244 [Wang J, Kharchenko NV. Comparative analysis of surgical interventions in the treatment of patients with metastatic lesions of the femur in combination with pathological fractures // RUDN journal of medicine. 2020;24(3):237–244 (In Russ.)]. doi:10.22363/2313-0245-2020-24-3-237-244
Ван Ц., Харченко Н.В., Карпенко В.Ю. Анализ факторов послеоперационного прогноза у пациентов с метастатическим поражением длинных трубчатых костей // Казанский медицинский журнал. 2020;101(5):685–690. doi:10.17816/KMJ2020-685 [Wang J, Kharchenko NV, Karpenko VY. Analysis of postoperative prognostic factors in patients with long bones metastatic lesions // Kazan Medical Journal. 2020;101(5):685–690 (In Russ.)]. doi:10.17816/KMJ2020-685
Weidle UH, Birzele F, Kollmorgen G et al. Molecular mechanisms of bone metastasis // Cancer Genomics Proteomics. 2016;13(1):1–12.
Florencio-Silva, Rinaldo et al. Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells // BioMed research international vol. 2015(2015):421746. doi:10.1155/2015/421746
Clarke B. Normal bone anatomy and physiology // Clinical Journal of the American Society of Nephrology. 2008;3(3):131–139. doi:10.2215/cjn.04151206
Datta HK, Ng WF, Walker JA et al. The cell biology of bone metabolism // J Clin Pathol. 2008;61(5):577–87. doi:10.1136/jcp.2007.048868
Teitelbaum SL. Osteoclasts: what do they do and how do they do it? // The American Journal of Pathology. 2007;170(2):427–435. doi:10.2353/ajpath.2007.060834
Bonewald LF. The amazing osteocyte // Journal of Bone and Mineral Research. 2011;26(2):229–238. doi:10.1002/jbmr.320
Karsenty G, Kronenberg HM, Settembre C. Genetic control of bone formation // Annual Review of Cell and Developmental Biology. 2009;25:629–648. doi:10.1146/annurev.cellbio.042308.113308
Florencio-Silva R, Sasso GR, Sasso-Cerri E et al. Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells // Biomed Res Int. 2015;2015:421746. doi:10.1155/2015/421746
Dallas SL, Prideaux M, Bonewald LF. The osteocyte: an endocrine cell ... and more // Endocr Rev. 2013;34(5):658–90. doi:10.1210/er.2012-1026
Brook N, Brook E, Dharmarajan A, Dass CR et al. Breast cancer bone metastases: pathogenesis and therapeutic targets // Int J Biochem Cell Biol. 2018;96:63–78. doi:10.1016/j.biocel.2018.01.003
Marks SCJr, Popoff SN. Bone cell biology: the regulation of development, structure, and function in the skeleton // Am J Anat. 1988;183(1):1–44. doi:10.1002/aja.1001830102
Capulli M, Paone R, Rucci N. Osteoblast and osteocyte: games without frontiers // Arch Biochem Biophys. 2014;561:3–12. doi:10.1016/j.abb.2014.05.003
Ono T, Nakashima T. Recent advances in osteoclast biology // Histochem Cell Biol. 2018;149(4):325–341. doi:10.1007/s00418-018-1636-2
Theocharis AD, Skandalis SS, Gialeli C et al. Extracellular matrix structure // Adv Drug Deliv Rev. 2016;97:4–27. doi:10.1016/j.addr.2015.11.001
Phan TC, Xu J, Zheng MH. Interaction between osteoblast and osteoclast: impact in bone disease // Histol Histopathol. 2004;19(4):1325–44. doi:10.14670/HH-19.1325
Fornetti J, Welm AL, Stewart SA. Understanding the bone in cancer metastasis // J Bone Miner Res. 2018;33(12):2099–2113. doi:10.1002/jbmr.3618
Kan C, Vargas G, Pape FL et al. Cancer Cell Colonisation in the Bone Microenvironment // Int J Mol Sci. 2016;17(10):1674. doi:10.3390/ijms17101674
Croucher PI, McDonald MM, Martin TJ. Bone metastasis: the importance of the neighbourhood // Nat Rev Cancer. 2016;16(6):373–86. doi:10.1038/nrc.2016.44
Haydar N, McDonald MM. Tumor Cell Dormancy — a Hallmark of Metastatic Growth and Disease Recurrence in Bone // Curr Mol Bio Rep. 2018(4):50–58. doi:10.1007/s40610-018-0088-8
Freeman A.K., Sumathi V.P., Jeys L. Metastatic tumours of bone // Surgery. Orthopaedics i. 2018;36(issue 1):35–40. doi:10.1016/j.mpsur.2017.10.002
Bussard KM, Gay CV, Mastro AM. The bone microenvironment in metastasis; what is special about bone? // Cancer Metastasis Rev. 2008;27(1):41–55. doi:10.1007/s10555-007-9109-4
Verrecchia F, Rédini F. Transforming Growth Factor-β Signaling Plays a Pivotal Role in the Interplay between Osteosarcoma Cells and Their Microenvironment // Front Oncol. 2018;8:133. doi:10.3389/fonc.2018.00133
Dunn LK, Mohammad KS, Fournier PG et al. Hypoxia and TGF-beta drive breast cancer bone metastases through parallel signaling pathways in tumor cells and the bone microenvironment // PLoS One. 2009;4(9):e6896. doi:10.1371/journal.pone.0006896
Pickup MW, Owens P, Moses HL. TGF-β, Bone Morphogenetic Protein, and Activin Signaling and the Tumor Microenvironment // Cold Spring Harb Perspect Biol. 2017;9(5):a022285. doi:10.1101/cshperspect.a022285
Joshi A, Cao D. TGF-beta signaling, tumor microenvironment and tumor progression: the butterfly effect // Front Biosci (Landmark Ed). 2010;15:180–94. doi:10.2741/3614
Cotta CV,Konoplev S,Medeiros LJ et al. Metastatic tumor in bone marrow: histopathology and advances in the biology of the tumor cells and bone marrow environment // Ann Diagn Pathol. 2006;10(3):169–192. doi:10.1016/j.anndiagpath.2006.04.001
Bădilă AE, Rădulescu DM, Niculescu AG et al. Recent Advances in the Treatment of Bone Metastases and Primary Bone Tumors: An Up-to-Date Review // Cancers (Basel). 2021;13(16):4229. doi:10.3390/cancers13164229
Macedo F, Ladeira K, Pinho F et al. Bone Metastases: An Overview // Oncol Rev. 2017;11(1):321. doi:10.4081/oncol.2017.321
Lu X, Mu E, Wei Y, Riethdorf S et al. VCAM-1 promotes osteolytic expansion of indolent bone micrometastasis of breast cancer by engaging α4β1-positive osteoclast progenitors // Cancer Cell. 2011;20(6):701–14. doi:10.1016/j.ccr.2011.11.002
Malanchi I, Santamaria-Martínez A, Susanto E et al. Interactions between cancer stem cells and their niche govern metastatic colonization // Nature. 2011;481(7379):85–9. doi:10.1038/nature10694
Zhang XM, Gao W, Pan Q. Research progress on mechanisms of bone metastasis of malignant tumor // J Int Oncol. 2011;38(1):67–69. doi:10.3760/ cma.j. issn. 1673-422X. 2011. 01. 022
Zhang X. Interactions between cancer cells and bone microenvironment promote bone metastasis in prostate cancer // Cancer Commun (Lond). 2019;39(1):76. doi:10.1186/s40880-019-0425-1
Whyne CM, Ferguson D, Clement A et al. Biomechanical Properties of Metastatically Involved Osteolytic Bone // Curr Osteoporos Rep. 2020;18(6):705–715. doi:10.1007/s11914-020-00633-z
Roodman GD. Genes associate with abnormal bone cell activity in bone metastasis // Cancer Metastasis Rev. 2012;31(3–4):569–78. doi:10.1007/s10555-012-9372-x
Chappard D, Bouvard B, Baslé MF et al. Bone metastasis: histological changes and pathophysiological mechanisms in osteolytic or osteosclerotic localizations // A review Morphologie. 2011;95(309):65–75. doi:10.1016/j.morpho.2011.02.004
Mandal CC. Osteolytic metastasis in breast cancer: effective prevention strategies // Expert Rev Anticancer Ther. 2020;20(9):797–811. doi:10.1080/14737140.2020.1807950
Guise TA, Mohammad KS, Clines G et al. Basic mechanisms responsible for osteolytic and osteoblastic bone metastases // Clin Cancer Res. 2006;12(20 Pt 2):6213s–6216s. doi:10.1158/1078-0432.CCR-06-1007
Weilbaecher KN, Guise TA, McCauley LK. Cancer to bone: a fatal attraction // Nat Rev Cancer. 2011;11(6):411–25. doi:10.1038/nrc3055
Yin JJ, Selander K, Chirgwin JM et al. TGF-beta signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development // J Clin Invest. 1999;103(2):197–206. doi:10.1172/JCI3523
Schmid-Alliana A, Schmid-Antomarchi H, Al-Sahlanee R et al. Understanding the Progression of Bone Metastases to Identify Novel Therapeutic Targets // Int J Mol Sci. 2018;19(1):148. doi:10.3390/ijms19010148
Walsh MC, Choi Y. Biology of the RANKL-RANK-OPG System in Immunity, Bone, and Beyond // Front Immunol. 2014;5:511. doi:10.3389/fimmu.2014.00511
Carreira AC, Lojudice FH, Halcsik E et al. Bone morphogeneticproteins: facts, challenges, and future perspectives // J Dent Res. 2014;93(4):335–345. doi:10.1177/0022034513518561
Wang W, Wang L. The role of Bone-stored growth factors in bone metastasis tumor // Journal of Chinese Oncology. 2015;21(12):1015–1018. doi:10.11735/j.issn.1671-170X.2015.12.B014
Cao Y, Cao R, Hedlund EM. R Regulation of tumor angiogenesis and metastasis by FGF and PDGF signaling pathways // J Mol Med (Berl). 2008;86(7):785–9. doi:10.1007/s00109-008-0337-z
Krzeszinski JY, Wan Y. New therapeutic targets for cancer bone metastasis // Trends in Pharmacological Sciences. 2015;36(6):360–373. doi:10.1016/j.tips.2015.04.006
Ma X, Yu J. Role and progression of bone microenvironment in the development of bone metastasis in malignant tumors // J Clin Pathol Res. 2019;39(11):2514–2518. doi :10.3978/j.issn.2095-6959.2019.11.028
Paget S. The distribution of secondary growths in cancer of the breast // Cancer Metastasis Rev. 1989;8:98–101.
Hiraga T. Bone metastasis: Interaction between cancer cells and bone microenvironment // J Oral Biosci. 2019;61(2):95–98. doi:10.1016/j.job.2019.02.002
Tu Q, Jin Z, Fix A et al. Targeted overexpression of BSP in osteoclasts promotes bone metastasis of breast cancer cells // Journal of Cellular Physiology, 2010;218(1):135–145. doi :10.1002/jcp.21576
Chiang AC, Massagué J. Molecular basis of metastasis // New England Journal of Medicine. 2008;359(26):2814–23. doi:10.1056/NEJMra0805239
Elazar V, Adwan H, Golomb G et al. Sustained delivery and efficacy of polymeric nanoparticles containing osteopontin and bone sialoprotein antisenses in rats with breast cancer bone metastasis // International Journal of Cancer Journal International Du Cancer. 2010;126(7):1749–1760. doi:10.1002/ijc.24890
Anract P, Biau D, Boudou-Rouquette P. Metastatic fractures of long limb bones // Orthop Traumatol Surg Res. 2017;103(1S):S41–S51. doi:10.1016/j.otsr.2016.11.001
Augsten M, Hägglöf C, Peña C et al. A Digest on the Role of the Tumor Microenvironment in Gastrointestinal Cancers // Cancer Microenvironment. 2010;3(1):167–176. doi:10.1007/s12307-010-0040-9
Yao Zhihong, Han Lei, Yang Zuozhang. Research progress of bone metastasis mechanism of malignant tumor // Chin J Metastatic Cancer. 2019;002(001):56–61. doi:10.3760/cma.j.issn.2096-5400.2019.01.012
Futakuchi M, Fukamachi K, Suzui M. Heterogeneity of tumor cells in the bone microenvironment: Mechanisms and therapeutic targets for bone metastasis of prostate or breast cancer // Adv Drug Deliv Rev. 2016;99(Pt B):206–211. doi:10.1016/j.addr.2015.11.017
Altieri B, Di Dato C, Martini C et al. Bone Metastases in Neuroendocrine Neoplasms: From Pathogenesis to Clinical Management // Cancers (Basel). 2019;11(9):1332. doi:10.3390/cancers11091332
Xiang L, Gilkes DM. The Contribution of the Immune System in Bone Metastasis Pathogenesis // Int J Mol Sci. 2019;20(4):999. doi:10.3390/ijms20040999
Müller A, Homey B, Soto H et al. Involvement of chemokine receptors in breast cancer metastasis // Nature. 2001;410(6824):50–6. doi:10.1038/35065016
Zhao E, Wang L, Dai J et al. Regulatory T cells in the bone marrow microenvironment in patients with prostate cancer // Oncoimmunology. 2012;1(2):152–161. doi:10.4161/onci.1.2.18480
Mao Y, Xue P, Li LL et al. Advances in Molecular Mechanisms of Early Bone Metastasis // Cancer Res Prev Treat. 2019;46(9):856–860. doi:10.3971/j.issn.1000-8578.2019.19.0634
Sawant A, Hensel JA, Chanda D et al. Depletion of plasmacytoid dendritic cells inhibits tumor growth and prevents bone metastasis of breast cancer cells // J Immunol. 2012;189(9):4258–4265. doi:10.4049/jimmunol.1101855
Schernberg A, Blanchard P, Chargari C et al. Neutrophils, a candidate biomarker and target for radiation therapy? // Acta Oncol. 2017;56(11):1522–1530. doi:10.1080/0284186X.2017.1348623
Semenza Gregg L.The hypoxic tumor microenvironment: A driving force for breast cancer progression // Biochim Biophys Acta. 2016;1863(3):382–391. doi:10.1016/j.bbamcr.2015.05.036
Bendinelli P, Maroni P, Matteucci E et al. Cell and Signal Components of the Microenvironment of Bone Metastasis Are Affected by Hypoxia // Int J Mol Sci. 2016;17(5):706. doi:10.3390/ijms17050706
Rankin EB, Giaccia AJ. Hypoxic control of metastasis // Science. 2016;352(6282):175–80. doi:10.1126/science.aaf4405
Prabhakar NR, Semenza GL. Adaptive and maladaptive cardiorespiratory responses to continuous and intermittent hypoxia mediated by hypoxia-inducible factors 1 and 2 // Physiol Rev. 2012;92(3):967–1003. doi:10.1152/physrev.00030.2011
Spencer JA, Ferraro F, Roussakis E et al. Direct measurement of local oxygen concentration in the bone marrow of live animals // Nature. 2014;508(7495):269–273. doi:10.1038/nature13034
Hiraga T. Hypoxic Microenvironment and Metastatic Bone Disease // Int J Mol Sci. 2018;19(11):3523. doi:10.3390/ijms19113523
Ibrahim-Hashim A, Estrella V. Acidosis and cancer: from mechanism to neutralization // Cancer Metastasis Rev. 2019;38(1–2):149–155. doi:10.1007/s10555-019-09787-4
Di Pompo G, Lemma S, Canti L et al. Intratumoral acidosis fosters cancer-induced bone pain through the activation of the mesenchymal tumor-associated stroma in bone metastasis from breast carcinoma // Oncotarget. 2017;8(33):54478–54496. doi:10.18632/oncotarget.17091
Arnett TR. Acidosis, hypoxia and bone // Arch Biochem Biophys. 2010;503(1):103–109. doi:10.1016/j.abb.2010.07.021
Tiedemann K, Hussein O, Komarova SV. Role of Altered Metabolic Microenvironment in Osteolytic Metastasis // Front Cell Dev Biol. 2020;8:435. doi:10.3389/fcell.2020.00435
Avnet S, Di Pompo G, Lemma S et al. Cause and effect of microenvironmental acidosis on bone metastases // Cancer Metastasis Rev. 2019;38(1–2):133–147. doi:10.1007/s10555-019-09790-9
Nagae M, Hiraga T, Yoneda T. Acidic microenvironment created by osteoclasts causes bone pain associated with tumor colonization // J Bone Miner Metab. 2007;25(2):99–104. doi:10.1007/s00774-006-0734-8
Di Pompo G, Cortini M, Baldini N et al. Acid Microenvironment in Bone Sarcomas // Cancers (Basel). 2021;13(15):3848. doi:10.3390/cancers13153848
Avnet S, Di Pompo G, Chano T et al. Cancer-associated mesenchymal stroma fosters the stemness of osteosarcoma cells in response to intratumoral acidosis via NF-κB activation // Int J Cancer. 2017;140(6):1331–1345. doi:10.1002/ijc.30540
Maroto R, Kurosky A, Hamill OP. Mechanosensitive Ca(2+) permeant cation channels in human prostate tumor cells // Channels (Austin). 2012;6(4):290–307. doi :10.4161/chan.21063
Zhang C, Zhang T, Zou J et al. Structural basis for regulation of human calcium-sensing receptor by magnesium ions and an unexpected tryptophan derivative co-agonist // Sci Adv. 2016;2(5):e1600241. doi:10.1126/sciadv.1600241
Das S, Clézardin P, Kamel S et al. The CaSR in Pathogenesis of Breast Cancer: A New Target for Early Stage Bone Metastases // Front Oncol. 2020;10:69. doi:10.3389/fonc.2020.00069
Xin XY, Li M, Wang HB. Research Progress of Calcium Ion Sensitive Receptor in Tumor // Guangdong Medical Journal. 2018(S1):272–275. doi:10.13820/j.cnki.gdyx.2018.s1.097
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
© АННМО «Вопросы онкологии», Copyright (c) 2022