ЭКЗОСОМАЛЬНЫЕ МИКРО-РНК - ПОТЕНЦИАЛЬНЫЙ ПРЕДИКТИВНЫЙ МАРКЕР ЭФФЕКТА НЕОАДЪЮВАНТНОЙ ТЕРАПИИ РАКА МОЛОЧНОЙ ЖЕЛЕЗЫ
##article.numberofdownloads## 47
##article.numberofviews## 170
PDF (Русский)

关键词

РАК МОЛОЧНОЙ ЖЕЛЕЗЫ
НЕОАДЪЮВАНТНАЯ ХИМИОТЕРАПИЯ
ЭКЗОСОМЫ
МИРНК
ПРЕДИКТОРЫ ЭФФЕКТИВНОСТИ ЛЕЧЕНИЯ

How to Cite

Коваленко, И., Семиглазов, В., Берштейн, Л., Дашян, Г., Семиглазова, Т., Камышинский, Р., Цырлина, Е., Штам, Т., Самсонов, Р., & Малек, А. (2018). ЭКЗОСОМАЛЬНЫЕ МИКРО-РНК - ПОТЕНЦИАЛЬНЫЙ ПРЕДИКТИВНЫЙ МАРКЕР ЭФФЕКТА НЕОАДЪЮВАНТНОЙ ТЕРАПИИ РАКА МОЛОЧНОЙ ЖЕЛЕЗЫ. VOPROSY ONKOLOGII, 64(6), 758–767. https://doi.org/10.37469/0507-3758-2018-64-6-758-767

摘要

В понятие неоадъювантного системного лечения пациентов с раком молочной железы (РМЖ) включаются неоадъювантная химиотерапия (НХТ), неоадъювантная гормонотерапия (НГТ), неоадъювантная таргетная терапия. Тот или иной вид системной терапии чаще всего определяется уровнем экспрессии рецепторов эстрогенов/прогестерона, HER2, т.е. иммуногистохимическими характеристиками заболевания. В данной статье предлагается оценить в качестве предиктивного фактора изменение профиля экзосомальных микро-РНК для определения эффективности НХТ, включающей таксаны. Полученные результаты выявили связь между уровнем концентрации нескольких молекул мирнк в циркулирующих экзосомах и эффектом НХТ. Кроме того, показатель, вычисляемый как соотношение концентраций miR-34a и miR-451, позволяет предсказывать эффект таксан-содержащей НХТ. Полученные результаты подтверждают предположение о предиктивной значимости экзосомальных миРНК и оправдывают дальнейшие исследования с целью создания клинически применимой методики прогнозирования эффекта НХТ при раке молочной железы.

https://doi.org/10.37469/0507-3758-2018-64-6-758-767
##article.numberofdownloads## 47
##article.numberofviews## 170
PDF (Русский)

参考

Архангельская П.А., Самсонов Р.Б., Штам Т.А. и др. Оценка экспрессии 4 микроРНК в цитологических препаратах в качестве дополнительного метода диагностики рака шейки матки // Опухоли женской репродуктивной системы. - 2017. - T. 13 (3). - C. 63-72.

Самсонов Р.Б., Тарасов М.А., Бурдаков В.С. и др. Диагностическое значение экзосомальных микрорнк при колоректальном раке // Колопроктология. - 2018. - T. 2 (64). - C. 25-31.

Семиглазов В. Ф., Семиглазов В. В. Лечение рака молочной железы. Клинико-биологическое обоснование. Руководство для врачей. - М.: СИМК, 2017. - 277 с.

Стенина М. Б., Жукова Л. Г, Королева И. А. и др. Практические рекомендации по лекарственному лечению инвазивного рака молочной железы. Злокачественные опухоли: Практические рекомендации RUSSCO. - 2017. - Т. 7. - С. 105-134.

Al-Khanbashi M., Caramuta S., Alajmi A. M.et al. Tissue and Serum miRNA Profile in Locally Advanced Breast Cancer (LABC) in Response to Neo-Adjuvant Chemotherapy (NAC) Treatment // PLoS One. - 2016. - Vol. 11 (4). - P. e0152032.

Almeida D., Gerhard R., Leitao D. et al. Topoisomerase II-alfa gene as a predictive marker of response to anthracyclines in breast cancer // Pathol. Res. Pract. - 2014. - Vol. 210 (10). - P. 675-679.

Bahrami A., Aledavood A., Anvari K. et al. The prognostic and therapeutic application of microRNAs in breast cancer: Tissue and circulating microRNAs // J. Cell. Physiol. - 2018. - Vol.233 (2). - P. 774-786.

Bamal R., Chintamani, Tandon M. et al. Evaluation and Validation of Neo-Adjuvant Response Index (NRI) and It's Correlation with Various Predictive Biomarkers and RECIST in Locally Advanced Breast Cancer // Indian J. Surg. Oncol. - 2014. - Vol. 5 (3). - P. 171-177.

Bardia A., Haber D. A. Solidifying liquid biopsies: can circulating tumor cell monitoring guide treatment selection in breast cancer? // J. Clin. Oncol. - 2014. - Vol.32 (31). - P. 3470-3471.

Berruti A., Amoroso V., Gallo F. et al. Pathologic complete response as a potential surrogate for the clinical outcome in patients with breast cancer after neoadjuvant therapy: a meta-regression of 29 randomized prospective studies // J. Clin. Oncol. - 2014. - Vol. 32(34). - P. 3883-3891.

Bertoli G., Cava C., Castiglioni I. MicroRNAs: New Biomarkers for Diagnosis, Prognosis, Therapy Prediction and Therapeutic Tools for Breast Cancer // Theranostics. - 2015. - Vol. 5 (10). - P. 1122-1143.

Chen X., Lu P., Wang D. D. et al. The role of miRNAs in drug resistance and prognosis of breast cancer formalin-fixed paraffin-embedded tissues // Gene. - 2016. - Vol. 595 (2). - P. 221-226.

Corcoran C., Rani S., O'Driscoll L. MiR-34a is an intracellular and exosomal predictive biomarker for response to docetaxel with clinical relevance to Prostate cancer progression // Prostate. - 2014. - Vol.74 (13). - P. 1320-1334.

De Iuliis F., Salerno G., Taglieri L., Scarpa S. Are pharmacogenomic biomarkers an effective tool to predict taxane toxicity and outcome in breast cancer patients? Literature review // Cancer Chemother Pharmacol. - 2015. - Vol. 76 (4). - P. 679-690.

Drago-Ferrante R., Pentimalli F., Carlisi D. et al. Suppressive role exerted by microRNA-29b-1-5p in triple negative breast cancer through SPIN1 regulation // Oncotarget. - 2017. - Vol. 8 (17). - P. 28939-28958.

Egeland N. G., Lunde S., Jonsdottir K. et al. The Role of MicroRNAs as Predictors of Response to Tamoxifen Treatment in Breast Cancer Patients // Int. J. Mol. Sci. - 2015. - Vol. 16 (10). - P. 24243-24275.

Fischer K. R., Durrans A., Lee S. et al. Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance // Nature. - 2015. - Vol. 527 (7579). - P. 472-476.

Gao J., Li L., Wu M. et al. MiR-26a inhibits proliferation and migration of breast cancer through repression of MCL-1 // PLoS One. - 2013. - Vol. 8 (6). - e65138.

Gasparini P., Cascione L., Fassan M. et al. MicroRNA expression profiling identifies a four microRNA signature as a novel diagnostic and prognostic biomarker in triple negative breast cancers // Oncotarget. - 2014. - Vol.5 (5). - P. 1174-1184.

Gu X., Li J. Y., Guo J. et al. Influence of MiR-451 on Drug Resistances of Paclitaxel-Resistant Breast Cancer Cell Line // Med. Sci. Monit. - 2015. - Vol. 21. - P. 3291-3297.

Gu X., Xue J. Q., Han S. J. et al. Circulating microRNA-451 as a predictor of resistance to neoadjuvant chemotherapy in breast cancer // Cancer Biomark. - 2016. - Vol.16 (3). - P. 395-403.

Guler E.N. Gene Expression Profiling in Breast Cancer and Its Effect on Therapy Selection in Early-Stage Breast Cancer // Eur. J. Breast. Health. - 2017. - Vol. 13(4). - P. 168-174.

Hannafon B.N., Trigoso Y.D., Calloway C. L. et al. Plasma exosome microRNAs are indicative of breast cancer // Breast Cancer Res. - 2016. - Vol. 18 (1). - P. 90.

Hu W., Tan C., He Y. et al. Functional miRNAs in breast cancer drug resistance // Onco Targets Ther. - 2018. - Vol. 11. - P. 1529-1541.

Hu Y., Li K., Asaduzzaman M. et al. MiR-106b~25 cluster regulates multidrug resistance in an ABC transporterindependent manner via downregulation of EP300 // Oncol. Rep. - 2016. - Vol. 35 (2). - P. 1170-1178.

Kastl L., Brown I., Schofield A. C. Effects of decitabine on the expression of selected endogenous control genes in human breast cancer cells // Mol. Cell. Probes. - 2010. - Vol. 24 (2). - P. 87-92.

Kastl L., Brown I., Schofield A. C. MiRNA-34a is associated with docetaxel resistance in human breast cancer cells // Breast Cancer Res Treat. - 2012. - Vol. 131 (2). - P. 445-454.

Korn E. L., Sachs M. C., McShane L. M. Statistical controversies in clinical research: assessing pathologic complete response as a trial-level surrogate end point for early-stage breast cancer // Ann Oncol. - 2016. - Vol. 27(1). - P. 10-15.

Lotvall J., Hill A. F., Hochberg F. et al. Minimal experimental requirements for definition of extracellular vesicles and their functions: a position statement from the International Society for Extracellular Vesicles // J. Extracell. Vesicles. - 2014. - Vol. 3. - e 26913.

Makarova J.A., Shkurnikov M.U., Wicklein D. et al. Intracellular and extracellular microRNA: An update on localization and biological role // Prog. Histochem. Cytochem. - 2016. - Vol. 51 (3). - P. 33-49.

Mukherjee P., Sharma S., Sheikh Z.A., Vijaykumar D.K. Correlation of clinico-pathologic and radiologic parameters of response to neoadjuvant chemotherapy in breast cancer // Indian J. Cancer. - 2014. - Vol. 51 (1). - P. 25-29.

Peng Y., Croce C.M. The role of MicroRNAs in human cancer // Signal. Transduct. Target. Ther. - 2016. - Vol. 1. - e 15004.

Phuong N.T., Kim S.K., Im J.H. et al. Induction of methionine adenosyltransferase 2A in tamoxifen-resistant breast cancer cells // Oncotarget. - 2016. - Vol. 7 (12). - P. 13902-13916.

Quinlan C., Uyeda J. W. Patient-Friendly Summary of the ACR Appropriateness Criteria: Monitoring Response to Neoadjuvant Systemic Therapy for Breast Cancer // J. Am. Coll. Radiol. - 2018. - Vol. 15 (7). - e11.

Semiglazov V. F., Semiglazov V. V. Neoadjuvant (Preoperative) therapy in Breast Cancer. Neoadjuvant Chemotherapy. - Croatia.: INTECH, 2012. - 22 p.

Singer C. F., Klinglmuller F., Stratmann R. et al. Response prediction to neoadjuvant chemotherapy: comparison between pre-therapeutic gene expression profiles and in vitro chemosensitivity assay // PLoS One. - 2013. - Vol.8 (6). - e66573.

Sun G., Sun L., Liu Y. et al. Her-2 expression regulated by downregulation of miR-9 and which affects chemotherapeutic effect in breast cancer // Cancer Gene Ther. - 2017. - Vol. 24 (5). - P. 194-202.

Turchinovich A., Weiz L., Langheinz A., Burwinkel B. Characterization of extracellular circulating microRNA // Nucleic Acids Res. - 2011. - Vol. 39 (16). - P. 72237233.

Vaidya J.S., Massarut S., Vaidya H.J. et al. Rethinking neoadjuvant chemotherapy for breast cancer // BMJ. - 2018. - Vol. 360. - j5913.

Wang W., Zhang L., Wang Y et al. Involvement of miR-451 in resistance to paclitaxel by regulating YWHAZ in breast cancer // Cell Death Dis. - 2017. - Vol. 8 (10). - e3071.

Wang Y., Yu Y., Tsuyada A. et al. Transforming growth factor-beta regulates the sphere-initiating stem cell-like feature in breast cancer through miRNA-181 and ATM // Oncogene. - 2011. - Vol. 30 (12). - P. 1470-1480.

Ward A., Balwierz A., Zhang J. D. et al. Re-expression of microRNA-375 reverses both tamoxifen resistance and accompanying EMT-like properties in breast cancer // Oncogene. - 2013. - Vol. 32 (9). - P 1173-1182.

Whiteside T.L. The potential of tumor-derived exosomes for noninvasive cancer monitoring // Expert. Rev. Mol. Diagn. - 2015. - Vol. 15 (10). - P 1293-1310.

Yao YS., Qiu W.S., Yao R.Y et al. MiR-141 confers docetaxel chemoresistance of breast cancer cells via regulation of EIF4E expression // Oncol. Rep. - 2015. - Vol. 33 (5). - P. 2504-2512.

Ye P, Fang C., Zeng H. et al. Differential microRNA expression profiles in tamoxifen-resistant human breast cancer cell lines induced by two methods // Oncol. Lett. - 2018. - Vol. 15 (3). - P. 3532-3539.

Yu X., Luo A., Liu Y et al. MiR-214 increases the sensitivity of breast cancer cells to tamoxifen and fulvestrant through inhibition of autophagy // Mol. Cancer. - 2015. - Vol. 14. - P 208.

Zhong S., Chen X., Wang D. et al. MicroRNA expression profiles of drug-resistance breast cancer cells and their exosomes // Oncotarget. - 2016. - Vol. 7 (15). - P 19601-19609.

Zhu W., Liu M., Fan Y. et al. Dynamics of circulating microRNAs as a novel indicator of clinical response to neoadjuvant chemotherapy in breast cancer // Cancer Med. - 2018. - P. 1-14.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

© АННМО «Вопросы онкологии», Copyright (c) 2018