Предикторы эффективности иммунотерапии при раке тела матки
pdf

Ключевые слова

рак тела матки
иммунотерапия
микросателлитная нестабильность
мутационная нагрузка опухоли
PD-L1

Как цитировать

Мусаелян, А., Иевлева , А., Отраднова, Е., Дегтярев , А., Зарембо, И., Имянитов, Е., & Орлов, С. (2023). Предикторы эффективности иммунотерапии при раке тела матки. Вопросы онкологии, 69(2), 187–194. https://doi.org/10.37469/0507-3758-2023-69-2-187-194

Аннотация

Рак тела матки (РТМ) является одним из ведущих причин онкологической заболеваемости у женского населения. При этом, до четверти всех случаев РТМ представлены распространенным процессом, при котором до недавнего времени отсутствовали эффективные подходы к лечению после прогрессирования заболевания на стандартной химиотерапии. Ингибиторы контрольных точек (ИКТ) позволили значительно расширить терапевтические опции для этой группы пациентов. Несмотря на то, что терапия ИКТ при РТМ продемонстрировала многообещающие результаты, данное заболевание является гетерогенным, что обуславливает важность изучения потенциальных предикторов эффективности лечения. В обзорной статье представлены данные о молекулярных основах ключевых предиктивных маркеров ответа на иммунотерапию при РТМ и их клиническом значении при рецидивирующем и метастатическом заболевании.

https://doi.org/10.37469/0507-3758-2023-69-2-187-194
pdf

Библиографические ссылки

Restaino S, Dinoi G, La Fera E, et al. Recurrent Endometrial Cancer: Which Is the Best Treatment? Systematic Review of the Literature. Cancers (Basel). 2022;14(17):4176. doi:10.3390/cancers14174176.

Каприн А.Д., Старинский В.В., Шахзадова А.О. Злокачественные новообразования в России в 2020 году (заболеваемость и смертность). М.: МНИОИ им. П.А. Герцена − филиал ФГБУ «НМИЦ радиологии» Минздрава России. 2021:252 [ Kaprin AD, Starinsky VV, Shakhzadova AO. Malignant neoplasms in Russia in 2020 (morbidity and mortality). Moscow: P.A. Herzen Institute of Medical Research − Branch of the Federal State Budgetary Institution «NMIC of Radiology» of the Ministry of Health of Russia (illustrated). 2021:252. (In Russ.)].

Tronconi F, Nero C, Giudice E, et al. Advanced and recurrent endometrial cancer: State of the art and future perspectives. Crit Rev Oncol Hematol. 2022;180:103851. doi:10.1016/j.critrevonc.2022.103851.

Neri M, Peiretti M, Melis GB, et al. Systemic therapy for the treatment of endometrial cancer. Expert Opin Pharmacother. 2019;20(16):20192032. doi:10.1080/14656566.2019.1654996.

Brooks RA, Fleming GF, Lastra RR, et al. Current recommendations and recent progress in endometrial cancer. CA Cancer J Clin. 2019. doi:10.3322/caac.21561.

Alsaab HO, Sau S, Alzhrani R, et al. PD-1 and PD-L1 Checkpoint Signaling Inhibition for Cancer Immunotherapy: Mechanism, Combinations, and Clinical Outcome. Front Pharmacol. 2017;8:561. doi:10.3389/fphar.2017.00561.

Lei Y, Li X, Huang Q, Zheng X, Liu M. Progress and Challenges of Predictive Biomarkers for Immune Checkpoint Blockade. Front Oncol. 2021;11:609. doi:10.3389/fonc.2021.617335.

Puccini A, Battaglin F, Iaia ML, et al. Overcoming resistance to anti-PD1 and anti-PD-L1 treatment in gastrointestinal malignancies. J Immunother Cancer. 2020. doi:10.1136/jitc-2019-000404.

Mullen MM, Mutch DG. Endometrial tumor immune response: predictive biomarker of response to immunotherapy. Clin Cancer Res. 2019;25:2366–8. doi:10.1158/1078-0432.CCR-18-4122.

Kanopiene D, Vidugiriene J, Valuckas KP, et al. Endometrial cancer and microsatellite instability status. Open Med (Warsaw, Poland). 2014;10:70–6. doi:10.1515/med-2015-0005.

Gilson P, Merlin J-L, Harlé A. Detection of microsatellite instability: state of the art and future applications in circulating tumour DNA (ctDNA). Cancers (Basel). 2021;13:1491. doi:10.3390/cancers13071491.

Yamamoto H, Watanabe Y, Maehata T, et al. Microsatellite instability in cancer: a novel landscape for diagnostic and therapeutic approach. Arch Toxicol. 2020. doi:10.1007/s00204-020-02833-z.

Kunitomi H, Banno K, Yanokura M, et al. New use of microsatellite instability analysis in endometrial cancer (Review). Oncol Lett. 2017. doi:10.3892/ol.2017.6640.

Baretti M, Le DT. DNA mismatch repair in cancer. Pharmacol Ther. 2018;189:45–62. doi:https://doi.org/10.1016/j.pharmthera.2018.04.004.

Hause RJ, Pritchard CC, Shendure J, et al. Classification and characterization of microsatellite instability across 18 cancer types. Nat Med 2016. doi:10.1038/nm.4191.

Hashmi AA, Mudassir G, Hashmi RN, et al. Microsatellite instability in endometrial carcinoma by immunohistochemistry, association with clinical and histopathologic parameters. Asian Pacific J Cancer Prev. 2019. doi:10.31557/APJCP.2019.20.9.2601.

Vagios S, Doulgeraki T, Giannikaki E, Kavoura E, Papadimitriou C, Gakiopoulou H, et al. Could Mismatch Repair Status Serve as a Biomarker for Immunotherapy in Endometrial Carcinoma? Anticancer Res 2020;40:1669–1676. doi:10.21873/anticanres.14118.

Zhang P, Liu M, Cui Y, et al. Microsatellite instability status differentially associates with intratumoral immune microenvironment in human cancers. Brief Bioinform. 2021;22:bbaa180. doi:10.1093/bib/bbaa180.

Choi YY, Kim H, Shin S-J, et al. Microsatellite instability and programmed cell death-ligand 1 expression in stage II/III gastric cancer: post hoc analysis of the classic randomized controlled study. Ann Surg. 2019;270.

Yang G, Zheng R, Jin Z. Correlations between microsatellite instability and the biological behaviour of tumours. J Cancer Res Clin Oncol. 2019. doi:10.1007/s00432-019-03053-4.

Lorenzi M, Amonkar M, Zhang J, et al. Epidemiology of microsatellite instability high (MSI-H) and deficient mismatch repair (dMMR) in solid tumors: a structured literature review. J Oncol. 2020;2020:1807929. doi:10.1155/2020/1807929.

Maiorano BA, Maiorano MFP, Cormio G, et al. How immunotherapy modified the therapeutic scenario of endometrial cancer: a systematic review. Front Oncol. 2022;12. doi:10.3389/fonc.2022.844801.

O’Malley DM, Bariani GM, Cassier PA, et al. Pembrolizumab in patients with microsatellite instability–high advanced endometrial cancer: results from the KEYNOTE-158 Study. J Clin Oncol. 2022;40:752–61. doi:10.1200/JCO.21.01874.

Azad NS, Gray RJ, Overman MJ, et al. Nivolumab is effective in mismatch repair-deficient noncolorectal cancers: results from Arm Z1D-A Subprotocol of the NCI-MATCH (EAY131) study. J Clin Oncol. 2020;38:214–22. doi:10.1200/JCO.19.00818.

Oaknin A, Gilbert L, Tinker A V, et al. Safety and antitumor activity of dostarlimab in patients with advanced or recurrent DNA mismatch repair deficient/microsatellite instability-high (dMMR/MSI-H) or proficient/stable (MMRp/MSS) endometrial cancer: interim results from GARNET—a phase I, singl. J Immunother Cancer. 2022;10:e003777. doi:10.1136/jitc-2021-003777.

Antill Y, Kok P-S, Robledo K, et al. Clinical activity of durvalumab for patients with advanced mismatch repair-deficient and repair-proficient endometrial cancer. A nonrandomized phase 2 clinical trial. J Immunother Cancer. 2021;9:e002255. doi:10.1136/jitc-2020-002255.

Roque DM, Bellone S, Siegel ER, et al. A phase II evaluation of pembrolizumab in recurrent microsatellite instability-high (MSI-H) endometrial cancer patients with Lynch-like versus MLH-1 methylated characteristics (NCT02899793). J Clin Oncol. 2021;39:5523. doi:10.1200/JCO.2021.39.15_suppl.5523.

Taylor MH, Lee C-H, Makker V, et al. Phase IB/II trial of lenvatinib plus pembrolizumab in patients with advanced renal cell carcinoma, endometrial cancer, and other selected advanced solid tumors. J Clin Oncol. 2020;38:1154–1163. doi:10.1200/JCO.19.01598.

Makker V, Taylor MH, Aghajanian C, et al. Lenvatinib plus pembrolizumab in patients with advanced endometrial cancer. J Clin Oncol. 2020;38:2981–92. doi:10.1200/JCO.19.02627.

Cao W, Ma X, Fischer JV et al. Immunotherapy in endometrial cancer: rationale, practice and perspectives. Biomark Res. 2021;9:49. doi:10.1186/s40364-021-00301-z.

Makker V, Colombo N, Casado Herráez A, et al. O008/#785 A multicenter, open-label, randomized, phase 3 study to compare the efficacy and safety of lenvatinib in combination with pembrolizumab vs treatment of physician’s choice in patients with advanced endometrial cancer: study 309/keynote-775. Int J Gynecol Cancer. 2021;31:A4A5. doi:10.1136/ijgc-2021-IGCS.8.

Post CCB, Westermann AM, Boere IA, et al. Efficacy and safety of durvalumab with olaparib in metastatic or recurrent endometrial cancer (phase II DOMEC trial). Gynecol Oncol. 2022;165(2):223229. doi:10.1016/j.ygyno.2022.02.025.

Bradley WH, Hayes MP, Taylor N, et al. An open label, nonrandomized, multisite phase II trial combining bevacizumab, atezolizumab, and rucaparib for the treatment of previously treated recurrent and progressive endometrial cancer. J Clin Oncol. 2022;40:5510. doi:10.1200/JCO.2022.40.16_suppl.5510.

Chen T-H, Chang PM-H, Yang M-H. Combination of pembrolizumab and lenvatinib is a potential treatment option for heavily pretreated recurrent and metastatic head and neck cancer. J Chinese Med Assoc. 2021;84. doi:10.1097/JCMA.0000000000000497.

Büttner R, Longshore JW, López-Ríos F, et al. Implementing TMB measurement in clinical practice: considerations on assay requirements. ESMO Open. 2019;4:e000442. doi:10.1136/esmoopen-2018-000442.

Chelariu-Raicu A, Mahdi H, Slomovitz BM. Changing treatments paradigms and role of immunotherapy in recurrent endometrial cancer. Curr Opin Obstet Gynecol. 2022;34(1):2835. doi:10.1097/GCO.0000000000000768.

Chalmers ZR, Connelly CF, Fabrizio D, et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 2017;9:34. doi:10.1186/s13073-017-0424-2.

McMeekin DS, Tritchler DL, Cohn DE, et al. Clinicopathologic significance of mismatch repair defects in endometrial cancer: an nrg oncology/gynecologic oncology group study. J Clin Oncol. 2016;34:3062–8. doi:10.1200/JCO.2016.67.8722.

Bell DW, Ellenson LH. Molecular genetics of endometrial carcinoma. Annu Rev Pathol Mech Dis. 2019;14:339–67. doi:10.1146/annurev-pathol-020117-043609.

Yen T-T, Wang T-L, Fader AN, et al. Molecular classification and emerging targeted therapy in endometrial cancer. Int J Gynecol Pathol. 2020;39:26–35. doi:10.1097/PGP.0000000000000585.

Socinski M, Velcheti V, Mekhail T, et al. LBA83 - Final efficacy results from B-F1RST, a prospective phase II trial evaluating blood-based tumour mutational burden (bTMB) as a predictive biomarker for atezolizumab (atezo) in 1L non-small cell lung cancer (NSCLC). Ann Oncol. 2019;30:v919–20. doi:10.1093/annonc/mdz394.081.

Vanderwalde A, Spetzler D, Xiao N. Microsatellite instability status determined by next-generation sequencing and compared with PD-L1 and tumor mutational burden in 11,348 patients. Cancer Med. 2018. doi:10.1002/cam4.1372.

Jiang M, Peng W, Pu X, et al. Peripheral blood biomarkers associated with outcome in non-small cell lung cancer patients treated with nivolumab and durvalumab monotherapy. Front Oncol. 2020;10:913. doi:10.3389/fonc.2020.00913.

Luchini C, Bibeau F, Ligtenberg MJL, et al. ESMO recommendations on microsatellite instability testing for immunotherapy in cancer, and its relationship with PD-1/PD-L1 expression and tumour mutational burden: A systematic review-based approach. Ann Oncol. 2019. doi:10.1093/annonc/mdz116.

Prasad V, Addeo A. The FDA approval of pembrolizumab for patients with TMB >10 mut/Mb: was it a wise decision? No. Ann Oncol. 2020;31:1112–4. doi:10.1016/j.annonc.2020.07.001.

Marabelle A, Fakih M, Lopez J, et al. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol. 2020;21:1353–65. doi:10.1016/S1470-2045(20)30445-9.

Rousset-Rouviere S, Rochigneux P, Chrétien A-S, et al. Endometrial carcinoma: immune microenvironment and emerging treatments in immuno-oncology. Biomed. 2021;9. doi:10.3390/biomedicines9060632.

Pakish JB, Zhang Q, Chen Z, et al. Immune microenvironment in microsatellite-instable endometrial cancers: hereditary or sporadic origin matters. Clin Cancer Res. 2017;23:4473–81. doi:10.1158/1078-0432.CCR-16-2655.

Raffone A, Travaglino A, Raimondo D, et al. Tumor-infiltrating lymphocytes and POLE mutation in endometrial carcinoma. Gynecol Oncol. 2021;161:621–8. doi:10.1016/j.ygyno.2021.02.030.

Kojima YA, Wang X, Sun H, et al. Reproducible evaluation of tumor-infiltrating lymphocytes (TILs) using the recommendations of International TILs Working Group 2014. Ann Diagn Pathol. 2018;35:77–9. doi:10.1016/j.anndiagpath.2018.05.007.

Jung IK, Kim SS, Suh DS, et al. Tumor-infiltration of T-lymphocytes is inversely correlated with clinicopathologic factors in endometrial adenocarcinoma. Obstet Gynecol Sci. 2014;57:266–73. doi:10.5468/ogs.2014.57.4.266.

Hendry S, Salgado R, Gevaert T, et al. Assessing tumor-infiltrating lymphocytes in solid tumors. Adv Anat Pathol. 2017;24:235–51. doi:10.1097/PAP.0000000000000162.

Voong KR, Feliciano J, Becker D, et al. Beyond PD-L1 testing-emerging biomarkers for immunotherapy in non-small cell lung cancer. Ann Transl Med Vol 5, No 18 (September 2017) Ann Transl Med (Focus "Emerging Uses Biomarkers Lung Cancer Manag. 2017. doi:10.21037/atm.2017.06.48.

Kim K-J, Lee KS, Cho HJ, et al. Prognostic implications of tumor-infiltrating FoxP3+ regulatory T cells and CD8+ cytotoxic T cells in microsatellite-unstable gastric cancers. Hum Pathol. 2014;45:285–93. doi:10.1016/j.humpath.2013.09.004.

Auguste A, Genestie C, De Bruyn M, et al. Refinement of high-risk endometrial cancer classification using DNA damage response biomarkers: a TransPORTEC initiative. Mod Pathol. 2018;31:1851–61. doi:10.1038/s41379-018-0055-1.

Meng Y, Yang Y, Zhang Y, et al. The role of an immune signature for prognosis and immunotherapy response in endometrial cancer. Am J Transl Res. 2021;13:532–48.

Лицензия Creative Commons

Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-NoDerivatives» («Атрибуция — Некоммерческое использование — Без производных произведений») 4.0 Всемирная.

© АННМО «Вопросы онкологии», Copyright (c) 2023