VARIETY OF TUMOR MODELS FOR TESTING ANTITUM TREATMENT ACTIVITY OF SUBSTANCES IN MICE
PDF (Русский)

Keywords

ОПУХОЛЕВЫЕ МОДЕЛИ IN VIVO
REVIEW
CANCER
MICE
CANCER MODELS IN VIVO
ANTICANCER DRUGS
ADVANTAGES
DISADVANTAGES

How to Cite

Nekhaeva, T., Chernov, A., Toropova, Y., Galagudza, M., & Baldueva, I. (2020). VARIETY OF TUMOR MODELS FOR TESTING ANTITUM TREATMENT ACTIVITY OF SUBSTANCES IN MICE. Voprosy Onkologii, 66(4), 353–363. https://doi.org/10.37469/0507-3758-2020-66-4-353-363

Abstract

Selection of tolerated and toxic doses, schemes of therapy for new anticancer drugs, assessment of its toxicity, pharmacokinetics, metabolism, study of the mechanism of action and tumor sensitivity are carried out using models of human tumors in mice. The review contains a diverse description of experimental models (transplantable, genetically engineered, humanized, autochthonous, orthotopic, heterotopic and metastatic) tumors using laboratory mice. The advantages, disadvantages, directions and specific features of the use of mouse models, their role in the study of mechanisms of action of antitumor drugs are considered on the examples of recent research.
https://doi.org/10.37469/0507-3758-2020-66-4-353-363
PDF (Русский)

References

Szadvari I., Krizanova O., Babula P. Athymic nude mice as an experimental model for cancer treatment // Physiol. Res. - 2016. - Vol. 65 (Suppl. 4). - P S441-S453.

Bousquet G., Janin A. Patient-derived xenograft: an adjuvant technology for the treatment of metastatic disease // Pathobiology. - 2016. - Vol. 83. - № 4. - P. 170-176.

Evans J P., Suttona P.A., Winiarski B.K. et al. From mice to men: Murine models of colorectal cancer for use in translational research // Crit. Rev. Oncol. Hematol. -2016. - Vol. 98. - P. 94-105.

Холоденко И.В., Доронин И.И., Холоденко Р.В. Опухолевые модели в изучении онкологических заболеваний // Иммунология. - 2013. - № 5. - C. 282-286.

Hardee S., Prasad M.L., Hui P et al. Pathologic characteristics, natural history, and prognostic implications of BRAFV600E mutationin pediatric papillary thyroid carcinoma // Pediatr. Dev. Pathol. - 2017. - Vol. 20. - № 3. - P. 206-212.

Kellar A., Egan C., Morris D. Preclinical Murine Models for Lung Cancer: Clinical Trial Applications // BioMed Res. Intern. - Vol. 2015. - Article ID 621324.

Talmadge J.E., Singh R.K., Fidler I.J., Raz A. Murine models to evaluate novel and conventional therapeutic strategies for cancer // Am. J. Pathol. - 2007. - Vol. 70. - № 3. - P. 793-804.

Gargiulo G. Next-Generation in vivo Modeling of Human Cancer // Front. Oncol. - 2018. - Vol. 8. - P. 429.

Berger M. Is there a relevance for anticancer drug development. Relevance of tumor models for anticancer drug development. - In: Fiebig HH, Burger BA., eds. Contributions to oncology. Basel: Karger, 1999. - P 15-27.

Гудратов Н.О. К 95-летию выведения первых линейных мышей. Линейные мыши: достоинства и недостатки // Биомедицина. - 2004. - № 4. - С. 40-42.

Линейные животные биомодели. www.scbmt.ru β mag β osn-bio › section_iii

Wainwright D.A., Horbinski C.M., Hashizume R. et al. Therapeutic hypothesis testing with rodent brain tumor models // Neurotherapeutics. - 2017. - Vol. 14. - № 2. - P. 385-392.

Falcone L., Casucci M. Exploiting secreted luciferases to monitor tumor progression in vivo // Methods Mol Biol. - 2016. - Vol. 1393. - P. 105-111.

Kurmasheva R.T., Houghton P.J. Identifying novel therapeutic agents using xenograft models of pediatric cancer // Cancer Chemother. Pharmacol. - 2016. - Vol. 78. - № 2. - P. 221-232.

Dutt A., Wong K-K. Mouse Models of Lung Cancer // Clin. Cancer Res. - 2006. - Vol. 12. - P. 4396s-4402s.

Day C-P., Merlino G., Van Dyke T. Preclinical Mouse Cancer Models: A Maze of Opportunities and Challenges // Cell. - 2015. - Vol. 163. - № 1. - P. 39-53.

Стуков А.Н., Вершинина С.Ф., Козявин Н.А. и др. Изучение активности ломустина при перевиваемом HER2-положительном раке молочной железы у мышей линии FVB/N, трансгенных по HER2 // Сибирский онкологический журнал. - 2019. - Т. 18. - № 5. - С. 54-60.

Wang Q.F., Ding H., Liu B.R. et al. Generation and comparison of two genetically engineered mouse models of ErbB2/Neu positive-PTEN deficient breast cancer // Zhejiang Da Xue Xue Bao Yi Xue Ban. - 2014. - Vol. 43. - № 4. - P. 427-433.

Gantz J.A., Palpant N.J., Welikson R.E. et al. Targeted genomic integration of a selectable floxed dual fluorescence reporter in human embryonic stem cells // PLoS One. - 2012. - Vol. 7. - № 10. - e46971.

Kemp CJ. Animal models of chemical carcinogenesis: driving breakthroughs in cancer research for 100 years // Cold Spring Harb. Protoc. - 2015. - Vol. 2015. - № 10. - P. 865-874.

IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Vol. 97 (1,3-Butadiene, Ethylene Oxide and Vinyl Halides (Vinyl Fluoride, Vinyl Chloride and Vinyl Bromide) /IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2007: Lyon, France. - 525 p.

Kasala E.R., Bodduluru L.N., Barua C.C. et al. Benzo(a) pyrene induced lung cancer: Role of dietary phytochemicals in chemoprevention // Pharmacol. Rep. - 2015. -Vol. 67. - № 5. - P. 996-1009.

Saito R., Kobayashi T, Kashima S. et al. Faithful preclini-cal mouse models for better translation to bedside in the field of immuno-oncology // Intern. J. Clin. Oncol. - 2019. Aug 12.

Moro M., Bertolini G., Caserini R. et al. Establishment of patient derived xenografts as functional testing of lung cancer aggressiveness // Sci. Rep. - 2017. - Vol. 7. -№ 1. - P. 6689.

Xia C., Chen R., Chen J. et al. Combining metformin and nelfinavir exhibits synergistic effects against the growth of human cervical cancer cells and xenograft in nude mice // Sci. Rep. - 2017. - Vol. 7. - P. 43373.

Lau V., Wong A Li-A., Ng C. et al. Drug sensitivity testing platforms for gastric cancer diagnostics // J. Clin. Pathol. - 2016. - Vol. 69. - № 2. - P. 93-96.

Cao X., Shores E.W., Hu-Li J. et al. Defective lymphoid development in mice lacking expression of the common cytokine receptor gamma chain // Immunity. - 1995. -Vol. 2. - № 3. - P. 223-238.

Shultz L.D., Lyons B.L., Burzenski L.M. et al. Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells // J. Immunol. -2005. - Vol. 174. - № 10. - P. 6477-6489.

Blunt T, Finnie N.J., Taccioli G.E. et al. Defective DNA-dependent protein kinase activity is linked to V(D)J recombination and DNA repair defects associated with the murine scid mutation // Cell. - 1995. - Vol. 80. - № 5. - P. 813-823.

Takenaka K., Prasolava T.K., Wang J.C. et al. (). Polymorphism in Sirpa modulates engraftment of human hematopoietic stem cells // Nat. Immunol. - 2007. - Vol. 8. - № 12. - P. 1313-1323.

Joo S.Y, Choi B.K., Kang M.J. et al. Development of functional human immune system with the transplantations of human fetal liver/thymus tissues and expanded hematopoietic stem cells in RAG2-/-gamma(c)-/-mice // Transplant. Proc. -2009. - Vol. 41. - № 5. - P. 1885-1890.

Douglas D.N., Kneteman N.M. Generation of improved mouse models for the study of hepatitis C virus // Eur. J. Pharmacol. - 2015. - Vol. 759. - P. 313-325.

Barzi M., Pankowicz F. P., Zorman B. et al. A novel humanized mouse lacking murine P450 oxidoreductase for studying human drug metabolism // Nat. Commun. - 2017. - Vol. 8. - № 1. - P. 39.

Bournazos S., DiLillo D.J., Ravetch J.V. Humanized mice to study FcR function // Curr. Top. Microbiol. Immunol. - 2014. - Vol. 382. - P. 237-248.

Morin A., Ruggiero C., Robidel E. et al. Establishment of a mouse xenograft model of metastatic adrenocortical carcinoma // Oncotarget. - 2017. - Vol. 8. - № 31. - P. 51050-51057.

Okada S., Vaeteewoottacharn K., Kariya R. Establishment of a patient-derived tumor xenograft model and application for precision cancer medicine // Chem. Pharm. Bull. (Tokyo). - 2018. - Vol. 66. - № 3. - P. 225-230.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

© АННМО «Вопросы онкологии», Copyright (c) 2020