Predictive role of CCND1, FGFR1 gene amplifications and PIK3CA mutations for endocrine therapy of primary metastatic breast cancer
##article.numberofdownloads## 7
##article.numberofviews## 283
pdf (Русский)

Keywords

breast cancer
mutation
amplification
tamoxifen
aromatase inhibitors
resistance to treatment

How to Cite

Iyevleva, A., Kramchaninov, M. ., Aleksakhina, S., Sokolova, T., Solovieva, T., Kosmin, A., Dmitriev, V., Petkau, V., Moiseenko, V. ., & Imyanitov, E. (2021). Predictive role of CCND1, FGFR1 gene amplifications and PIK3CA mutations for endocrine therapy of primary metastatic breast cancer . Voprosy Onkologii, 67(5), 646–657. https://doi.org/10.37469/0507-3758-2021-67-5-646-657

Abstract

Background. More than half of breast carcinomas express estrogen and progesterone receptors (ER and PR) and remain estrogen-dependent. Endocrine therapy with inhibitors of the estrogen cascade allows long-term and effective control of the disease in a significant number of patients, however, some patients demonstrate primary, and the majority - secondary resistance to such treatment.

The aim of the study was to evaluate the predictive significance of the CCND1 and FGFR1 gene amplifications and PIK3CA mutations for endocrine therapy.

Materials and methods. The study included 138 women with ER-positive primary metastatic breast cancer (BC) who received hormone therapy with aromatase inhibitors (AIs) (n = 69), tamoxifen (n = 65), goserelin (n = 2), or a combination of goserelin and tamoxifen (n = 2) as the first line treatment. CCND1 and FGFR1 gene amplifications were tested by digital droplet PCR, while mutations in exons 7, 9, and 20 of the PIK3CA gene were determined using high-resolution melting analysis and allele-specific PCR. We analyzed the associations between the presence of the mentioned genetic lesions, progression-free-survival (PFS) and response to treatment.

Results. Amplifications of CCND1 and FGFR1 genes were identified in 24 (17.9%) and 28 (20.9%) of 134 successfully tested cases, respectively; 9 tumors were positive for both alterations. Amplifications were more prevalent in less differentiated tumors (p = 0.018). CCND1 amplification was associated with shorter PFS in patients receiving aromatase inhibitors (16.0 months vs. 32.4 months, HR = 3.16 [95% CI: 1.26-7.93], p = 0.014). FGFR1 status did not significantly affect PFS of AI-treated women, however, partial regress as a result of AI implementation was less frequent in FGFR1-amplified BC as compared to cases with normal FGFR1 copy number (p = 0.031).

The frequency of PIK3CA mutations was 40.2% (49/122). They were more often observed in smaller tumors (p = 0.034), in PR-positive carcinomas (p = 0.012), and in cases with more extensive metastatic involvement (p = 0.029). The presence of PIK3CA mutations did not affect the results of treatment with AI or tamoxifen.

Conclusion The presence of CCND1 and/or FGFR1 amplification is associated with worse results of AI therapy of metastatic breast cancer.

https://doi.org/10.37469/0507-3758-2021-67-5-646-657
##article.numberofdownloads## 7
##article.numberofviews## 283
pdf (Русский)

References

Zwijsen RM, Buckle RS, Hijmans EM et al. Ligand-independent recruitment of steroid receptor coactivators to estrogen receptor by cyclin D1 // Genes Dev. 1998;12:3488–98. https://doi:10.1101/gad.12.22.3488

Jirawatnotai S, Hu Y, Michowski W et al. A function for cyclin D1 in DNA repair uncovered by protein interactome analyses in human cancers // Nature. 2011;474:230–4. https://doi:10.1038/nature10155

Casimiro MC., Di Sante G, Crosariol M et al. Kinase-independent role of cyclin D1 in chromosomal instability and mammary tumorigenesis // Oncotarget. 2015;6:8525–38. https://doi:10.18632/oncotarget.3267

Gillett C, Fantl V, Smith R et al. Amplification and overexpression of cyclin D1 in breast cancer detected by immunohistochemical staining // Cancer Res. 1994;54:1812–7.

Lundgren K, Brown M, Pineda S et al. Effects of cyclin D1 gene amplification and protein expression on time to recurrence in postmenopausal breast cancer patients treated with anastrozole or tamoxifen: a TransATAC study // Breast Cancer Res. 2012;14:R57. https://doi:10.1186/bcr3161

Roy PG, Pratt N, Purdie CA et al. High CCND1 amplification identifies a group of poor prognosis women with estrogen receptor positive breast cancer // Int J Cancer. 2010;127:355–60. https://doi:10.1002/ijc.25034

Kenny FS, Hui R, Musgrove EA et al. Overexpression of cyclin D1 messenger RNA predicts for poor prognosis in estrogen receptor-positive breast cancer // Clin Cancer Res. 1999;5:2069–76.

Bièche I, Olivi M, Noguès C et al. Prognostic value of CCND1 gene status in sporadic breast tumours, as determined by real-time quantitative PCR assays // Br J Cancer. 2002;86:580–6. https://doi:10.1038/sj.bjc.6600109

Rudas M, Lehnert M, Huynh A et al. Cyclin D1 expression in breast cancer patients receiving adjuvant tamoxifen-based therapy // Clin Cancer Res. 2008;14:1767–74. https://doi:10.1158/1078-0432.CCR-07-4122

Beca F, Pereira M, Cameselle-Teijeiro JF et al. Altered PPP2R2A and Cyclin D1 expression defines a subgroup of aggressive luminal-like breast cancer // BMC Cancer. 2015;15:285. https://doi:10.1186/s12885-015-1266-1

Ahlin C, Lundgren C, Embretsén-Varro E et al. High expression of cyclin D1 is associated to high proliferation rate and increased risk of mortality in women with ER-positive but not in ER-negative breast cancers // Breast Cancer Res Treat. 2017;164:667–678. https://doi:10.1007/s10549-017-4294-5

Lundberg A, Lindström LS, Li J et al. The long-term prognostic and predictive capacity of cyclin D1 gene amplification in 2305 breast tumours // Breast Cancer Res. 2019;21:34. https://doi:10.1186/s13058-019-1121-4

Stendahl M, Kronblad A, Rydén L et al. Cyclin D1 overexpression is a negative predictive factor for tamoxifen response in postmenopausal breast cancer patients // Br J Cancer. 2004;90:1942–8. https://doi:10.1038/sj.bjc.6601831

Jirström K, Stendahl M, Rydén L et al. Adverse effect of adjuvant tamoxifen in premenopausal breast cancer with cyclin D1 gene amplification // Cancer Res. 2005;65:8009–16. https://doi:10.1158/0008-5472.CAN-05-0746

Ahnström M, Nordenskjöld B, Rutqvist LE et al. Role of cyclin D1 in ErbB2-positive breast cancer and tamoxifen resistance // Breast Cancer Res Treat. 2005;91:145–51. https://doi:10.1007/s10549-004-6457-4

Brown LA, Johnson K, Leung S et al. Co-amplification of CCND1 and EMSY is associated with an adverse outcome in ER-positive tamoxifen-treated breast cancers // Breast Cancer Res Treat. 2010;121:347–54. https://doi:10.1007/s10549-009-0479-x

Theillet C, Adelaide J, Louason G et al. FGFRI and PLAT genes and DNA amplification at 8p12 in breast and ovarian cancers // Genes Chromosomes Cancer. 1993; 7(4):219–26.

Turner N, Pearson A, Sharpe R et al. FGFR1 amplification drives endocrine therapy resistance and is a therapeutic target in breast cancer // Cancer Res. 2010;70:2085–94. https://doi:10.1158/0008-5472.CAN-09-3746

Tomiguchi M, Yamamoto Y, Yamamoto-Ibusuki M et al. Fibroblast growth factor receptor-1 protein expression is associated with prognosis in estrogen receptor-positive/human epidermal growth factor receptor-2-negative primary breast cancer // Cancer Sci. 2016;107:491–8. https://doi:10.1111/cas.12897

Elbauomy Elsheikh S, Green AR, Lambros MB et al. FGFR1 amplification in breast carcinomas: a chromogenic in situ hybridisation analysis // Breast Cancer Res. 2007;9:R23. https://doi:10.1186/bcr1665

Formisano L, Stauffer KM, Young CD et al. Association of FGFR1 with ERα Maintains Ligand-Independent ER Transcription and Mediates Resistance to Estrogen Deprivation in ER+ Breast Cancer // Clin Cancer Res. 2017;23:6138–6150. https://doi:10.1158/1078-0432.CCR-17-1232

Jang M, Kim E, Choi Y et al. FGFR1 is amplified during the progression of in situ to invasive breast carcinoma // Breast Cancer Res. 2012;14:R115. https://doi:10.1186/bcr3239

Shi YJ, Tsang JY, Ni YB et al. FGFR1 is an adverse outcome indicator for luminal A breast cancers // Oncotarget. 2016;7:5063–73. https://doi:10.18632/oncotarget.6563

Karlsson E, Waltersson MA, Bostner J et al. High-resolution genomic analysis of the 11q13 amplicon in breast cancers identifies synergy with 8p12 amplification, involving the mTOR targets S6K2 and 4EBP1 // Genes Chromosomes Cancer. 2011;50:775–87. https://doi:10.1002/gcc.20900

Anderson EJ, Mollon LE, Dean JL et al. A Systematic Review of the Prevalence and Diagnostic Workup of PIK3CA Mutations in HR+/HER2- Metastatic Breast Cancer // Int J Breast Cancer. 2020;2020:3759179. https://doi:10.1155/2020/3759179

Zardavas D, Te Marvelde L, Milne RL et al. Tumor PIK3CA Genotype and Prognosis in Early-Stage Breast Cancer: A Pooled Analysis of Individual Patient Data // J Clin Oncol. 2018;36(10):981–990. https://doi:10.1200/JCO.2017.74.8301

Mosele F, Stefanovska B, Lusque A et al. Outcome and molecular landscape of patients with PIK3CA-mutated metastatic breast cancer // Ann Oncol. 2020;31:377–386. https://doi:10.1016/j.annonc.2019.11.006

Perez EA, de Haas SL, Eiermann W et al. Relationship between tumor biomarkers and efficacy in MARIANNE, a phase III study of trastuzumab emtansine ± pertuzumab versus trastuzumab plus taxane in HER2-positive advanced breast cancer. BMC // Cancer. 2019;19(1):517. https://doi:10.1186/s12885-019-5687-0

André F, Ciruelos EM, Juric D et al. Alpelisib plus fulvestrant for PIK3CA-mutated, hormone receptor-positive, human epidermal growth factor receptor-2-negative advanced breast cancer: final overall survival results from SOLAR-1 // Ann Oncol. 2021;32:208–217. https://doi:10.1016/j.annonc.2020.11.011

Barbareschi M, Buttitta F, Felicioni L et al. Different prognostic roles of mutations in the helical and kinase domains of the PIK3CA gene in breast carcinomas // Clin Cancer Res. 2007;13:6064–9. https://doi:10.1158/1078-0432.CCR-07-0266

Willis O, Choucair K, Alloghbi A et al. PIK3CA gene aberrancy and role in targeted therapy of solid malignancies // Cancer Gene Ther. 2020;27:634–644. https://doi:10.1038/s41417-020-0164-0

Yanus GA, Belyaeva AV, Ivantsov AO et al. Pattern of clinically relevant mutations in consecutive series of Russian colorectal cancer patients // Med Oncol. 2013;30:686. https://doi:10.1007/s12032-013-0686-5

Han S, Park K, Bae BN et al. Cyclin D1 expression and patient outcome after tamoxifen therapy in estrogen receptor positive metastatic breast cancer // Oncol Rep. 2003;10:141–4.

Bostner J, Ahnström Waltersson M, Fornander T et al. Amplification of CCND1 and PAK1 as predictors of recurrence and tamoxifen resistance in postmenopausal breast cancer // Oncogene. 2007;26:6997–7005. https://doi:10.1038/sj.onc.1210506

Keilty D, Buchanan M, Ntapolias K et al. RSF1 and not cyclin D1 gene amplification may predict lack of benefit from adjuvant tamoxifen in high-risk pre-menopausal women in the MA.12 randomized clinical trial // PLoS One. 2013;8:e81740. https://doi:10.1371/journal.pone.0081740

Giltnane JM, Hutchinson KE, Stricker TP et al. Genomic profiling of ER+ breast cancers after short-term estrogen suppression reveals alterations associated with endocrine resistance // Sci Transl Med. 2017;9(402). https://doi:10.1126/scitranslmed.aai7993

Drago JZ, Formisano L, Juric D et al. FGFR1 Amplification Mediates Endocrine Resistance but Retains TORC Sensitivity in Metastatic Hormone Receptor-Positive (HR(+)) Breast Cancer // Clin Cancer Res. 2019;25:6443–6451. https://doi:10.1158/1078-0432.CCR-19-0138

Miller TW, Balko JM, Arteaga CL Phosphatidylinositol 3-kinase and antiestrogen resistance in breast cancer // J Clin Oncol. 2011;29:4452–61. https://doi:10.1200/JCO.2010.34.4879

Ramirez-Ardila DE, Helmijr JC, Look MP et al. Hotspot mutations in PIK3CA associate with first-line treatment outcome for aromatase inhibitors but not for tamoxifen // Breast Cancer Res Treat. 2013;139:39–49. https://doi:10.1007/s10549-013-2529-7

Ellis MJ, Lin L, Crowder R et al. Phosphatidyl-inositol-3-kinase alpha catalytic subunit mutation and response to neoadjuvant endocrine therapy for estrogen receptor positive breast cancer // Breast Cancer Res Treat. 2010;119:379–90. https://doi:10.1007/s10549-009-0575-y

Beelen K, Opdam M, Severson TM et al. PIK3CA mutations, phosphatase and tensin homolog, human epidermal growth factor receptor 2, and insulin-like growth factor 1 receptor and adjuvant tamoxifen resistance in postmenopausal breast cancer patients // Breast Cancer Res. 2014;16(1):R13. https://doi:10.1186/bcr3606

Sabine VS, Crozier C, Brookes CL et al. Mutational analysis of PI3K/AKT signaling pathway in tamoxifen exemestane adjuvant multinational pathology study // J Clin Oncol. 2014;32:2951-8. https://doi:10.1200/JCO.2013.53.8272

Loi S, Haibe-Kains B, Majjaj S et al. PIK3CA mutations associated with gene signature of low mTORC1 signaling and better outcomes in estrogen receptor-positive breast cancer // Proc Natl Acad Sci USA. 2010;107:10208–13. https://doi:10.1073/pnas.0907011107

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

© АННМО «Вопросы онкологии», Copyright (c) 2021