Abstract
Primary tumors can be metastable in almost all tissues of the body, but some tumors, such as breast cancer, prostate cancer, lung cancer, thyroid cancer and kidney cancer are mainly metastasized in bones. The bone is the third in terms of the localization frequency of metastasis after the lungs and liver. Clinical manifestations of bone metastases include pain, reduction of mobility, pathological fractures, etc., which are combined with skeleton-related events (Skeletal-Related Events, Sres). The appearance of metastases in the bone urges the quality of life of patients and reduce the survival period. Currently, the mechanism for metastasizing tumor cells in the bone is not fully clear. Recent studies show that the occurrence of metastasis in the bone includes characteristics of tumor cells, bone microenvironment and interaction between two. This literary review analyzed the characteristics of tumor cells, the type and characteristics of metastases in the bone, the specificity of bone microenvironment and the interaction between tumor cells and bone microenvasters, which can provide theoretical basis and new ideas for the prevention and treatment of metastasis bone. To prepare the review, cited references are retrieved from following databases Scopus, Web of Science, Medline, PubMed, CyberLeninka, RISC and CNKI. The analysis used references indexed in the Scopus and Web of Science databases (93%), RISC and CNKI databases (7%). More than 50% of the paper were published in the last 5 years. 83 references are used for completing this review.
References
Suva LJ, Washam C, Nicholas RW et al. Bone metastasis: mechanisms and therapeutic opportunities // Nat Rev Endocrinol. 2011;7(4):208–18. doi:10.1038/nrendo.2010.227
Ван Ц., Харченко Н.В. Сравнительный анализ хирургических вмешательствв лечении пациентов с метастатическим поражением бедренной кости в сочетании с патологическими переломами // Вестник РУДН. Серия: Медицина. 2020;24(3):237–244. doi:10.22363/2313-0245-2020-24-3-237-244 [Wang J, Kharchenko NV. Comparative analysis of surgical interventions in the treatment of patients with metastatic lesions of the femur in combination with pathological fractures // RUDN journal of medicine. 2020;24(3):237–244 (In Russ.)]. doi:10.22363/2313-0245-2020-24-3-237-244
Ван Ц., Харченко Н.В., Карпенко В.Ю. Анализ факторов послеоперационного прогноза у пациентов с метастатическим поражением длинных трубчатых костей // Казанский медицинский журнал. 2020;101(5):685–690. doi:10.17816/KMJ2020-685 [Wang J, Kharchenko NV, Karpenko VY. Analysis of postoperative prognostic factors in patients with long bones metastatic lesions // Kazan Medical Journal. 2020;101(5):685–690 (In Russ.)]. doi:10.17816/KMJ2020-685
Weidle UH, Birzele F, Kollmorgen G et al. Molecular mechanisms of bone metastasis // Cancer Genomics Proteomics. 2016;13(1):1–12.
Florencio-Silva, Rinaldo et al. Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells // BioMed research international vol. 2015(2015):421746. doi:10.1155/2015/421746
Clarke B. Normal bone anatomy and physiology // Clinical Journal of the American Society of Nephrology. 2008;3(3):131–139. doi:10.2215/cjn.04151206
Datta HK, Ng WF, Walker JA et al. The cell biology of bone metabolism // J Clin Pathol. 2008;61(5):577–87. doi:10.1136/jcp.2007.048868
Teitelbaum SL. Osteoclasts: what do they do and how do they do it? // The American Journal of Pathology. 2007;170(2):427–435. doi:10.2353/ajpath.2007.060834
Bonewald LF. The amazing osteocyte // Journal of Bone and Mineral Research. 2011;26(2):229–238. doi:10.1002/jbmr.320
Karsenty G, Kronenberg HM, Settembre C. Genetic control of bone formation // Annual Review of Cell and Developmental Biology. 2009;25:629–648. doi:10.1146/annurev.cellbio.042308.113308
Florencio-Silva R, Sasso GR, Sasso-Cerri E et al. Biology of Bone Tissue: Structure, Function, and Factors That Influence Bone Cells // Biomed Res Int. 2015;2015:421746. doi:10.1155/2015/421746
Dallas SL, Prideaux M, Bonewald LF. The osteocyte: an endocrine cell ... and more // Endocr Rev. 2013;34(5):658–90. doi:10.1210/er.2012-1026
Brook N, Brook E, Dharmarajan A, Dass CR et al. Breast cancer bone metastases: pathogenesis and therapeutic targets // Int J Biochem Cell Biol. 2018;96:63–78. doi:10.1016/j.biocel.2018.01.003
Marks SCJr, Popoff SN. Bone cell biology: the regulation of development, structure, and function in the skeleton // Am J Anat. 1988;183(1):1–44. doi:10.1002/aja.1001830102
Capulli M, Paone R, Rucci N. Osteoblast and osteocyte: games without frontiers // Arch Biochem Biophys. 2014;561:3–12. doi:10.1016/j.abb.2014.05.003
Ono T, Nakashima T. Recent advances in osteoclast biology // Histochem Cell Biol. 2018;149(4):325–341. doi:10.1007/s00418-018-1636-2
Theocharis AD, Skandalis SS, Gialeli C et al. Extracellular matrix structure // Adv Drug Deliv Rev. 2016;97:4–27. doi:10.1016/j.addr.2015.11.001
Phan TC, Xu J, Zheng MH. Interaction between osteoblast and osteoclast: impact in bone disease // Histol Histopathol. 2004;19(4):1325–44. doi:10.14670/HH-19.1325
Fornetti J, Welm AL, Stewart SA. Understanding the bone in cancer metastasis // J Bone Miner Res. 2018;33(12):2099–2113. doi:10.1002/jbmr.3618
Kan C, Vargas G, Pape FL et al. Cancer Cell Colonisation in the Bone Microenvironment // Int J Mol Sci. 2016;17(10):1674. doi:10.3390/ijms17101674
Croucher PI, McDonald MM, Martin TJ. Bone metastasis: the importance of the neighbourhood // Nat Rev Cancer. 2016;16(6):373–86. doi:10.1038/nrc.2016.44
Haydar N, McDonald MM. Tumor Cell Dormancy — a Hallmark of Metastatic Growth and Disease Recurrence in Bone // Curr Mol Bio Rep. 2018(4):50–58. doi:10.1007/s40610-018-0088-8
Freeman A.K., Sumathi V.P., Jeys L. Metastatic tumours of bone // Surgery. Orthopaedics i. 2018;36(issue 1):35–40. doi:10.1016/j.mpsur.2017.10.002
Bussard KM, Gay CV, Mastro AM. The bone microenvironment in metastasis; what is special about bone? // Cancer Metastasis Rev. 2008;27(1):41–55. doi:10.1007/s10555-007-9109-4
Verrecchia F, Rédini F. Transforming Growth Factor-β Signaling Plays a Pivotal Role in the Interplay between Osteosarcoma Cells and Their Microenvironment // Front Oncol. 2018;8:133. doi:10.3389/fonc.2018.00133
Dunn LK, Mohammad KS, Fournier PG et al. Hypoxia and TGF-beta drive breast cancer bone metastases through parallel signaling pathways in tumor cells and the bone microenvironment // PLoS One. 2009;4(9):e6896. doi:10.1371/journal.pone.0006896
Pickup MW, Owens P, Moses HL. TGF-β, Bone Morphogenetic Protein, and Activin Signaling and the Tumor Microenvironment // Cold Spring Harb Perspect Biol. 2017;9(5):a022285. doi:10.1101/cshperspect.a022285
Joshi A, Cao D. TGF-beta signaling, tumor microenvironment and tumor progression: the butterfly effect // Front Biosci (Landmark Ed). 2010;15:180–94. doi:10.2741/3614
Cotta CV,Konoplev S,Medeiros LJ et al. Metastatic tumor in bone marrow: histopathology and advances in the biology of the tumor cells and bone marrow environment // Ann Diagn Pathol. 2006;10(3):169–192. doi:10.1016/j.anndiagpath.2006.04.001
Bădilă AE, Rădulescu DM, Niculescu AG et al. Recent Advances in the Treatment of Bone Metastases and Primary Bone Tumors: An Up-to-Date Review // Cancers (Basel). 2021;13(16):4229. doi:10.3390/cancers13164229
Macedo F, Ladeira K, Pinho F et al. Bone Metastases: An Overview // Oncol Rev. 2017;11(1):321. doi:10.4081/oncol.2017.321
Lu X, Mu E, Wei Y, Riethdorf S et al. VCAM-1 promotes osteolytic expansion of indolent bone micrometastasis of breast cancer by engaging α4β1-positive osteoclast progenitors // Cancer Cell. 2011;20(6):701–14. doi:10.1016/j.ccr.2011.11.002
Malanchi I, Santamaria-Martínez A, Susanto E et al. Interactions between cancer stem cells and their niche govern metastatic colonization // Nature. 2011;481(7379):85–9. doi:10.1038/nature10694
Zhang XM, Gao W, Pan Q. Research progress on mechanisms of bone metastasis of malignant tumor // J Int Oncol. 2011;38(1):67–69. doi:10.3760/ cma.j. issn. 1673-422X. 2011. 01. 022
Zhang X. Interactions between cancer cells and bone microenvironment promote bone metastasis in prostate cancer // Cancer Commun (Lond). 2019;39(1):76. doi:10.1186/s40880-019-0425-1
Whyne CM, Ferguson D, Clement A et al. Biomechanical Properties of Metastatically Involved Osteolytic Bone // Curr Osteoporos Rep. 2020;18(6):705–715. doi:10.1007/s11914-020-00633-z
Roodman GD. Genes associate with abnormal bone cell activity in bone metastasis // Cancer Metastasis Rev. 2012;31(3–4):569–78. doi:10.1007/s10555-012-9372-x
Chappard D, Bouvard B, Baslé MF et al. Bone metastasis: histological changes and pathophysiological mechanisms in osteolytic or osteosclerotic localizations // A review Morphologie. 2011;95(309):65–75. doi:10.1016/j.morpho.2011.02.004
Mandal CC. Osteolytic metastasis in breast cancer: effective prevention strategies // Expert Rev Anticancer Ther. 2020;20(9):797–811. doi:10.1080/14737140.2020.1807950
Guise TA, Mohammad KS, Clines G et al. Basic mechanisms responsible for osteolytic and osteoblastic bone metastases // Clin Cancer Res. 2006;12(20 Pt 2):6213s–6216s. doi:10.1158/1078-0432.CCR-06-1007
Weilbaecher KN, Guise TA, McCauley LK. Cancer to bone: a fatal attraction // Nat Rev Cancer. 2011;11(6):411–25. doi:10.1038/nrc3055
Yin JJ, Selander K, Chirgwin JM et al. TGF-beta signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development // J Clin Invest. 1999;103(2):197–206. doi:10.1172/JCI3523
Schmid-Alliana A, Schmid-Antomarchi H, Al-Sahlanee R et al. Understanding the Progression of Bone Metastases to Identify Novel Therapeutic Targets // Int J Mol Sci. 2018;19(1):148. doi:10.3390/ijms19010148
Walsh MC, Choi Y. Biology of the RANKL-RANK-OPG System in Immunity, Bone, and Beyond // Front Immunol. 2014;5:511. doi:10.3389/fimmu.2014.00511
Carreira AC, Lojudice FH, Halcsik E et al. Bone morphogeneticproteins: facts, challenges, and future perspectives // J Dent Res. 2014;93(4):335–345. doi:10.1177/0022034513518561
Wang W, Wang L. The role of Bone-stored growth factors in bone metastasis tumor // Journal of Chinese Oncology. 2015;21(12):1015–1018. doi:10.11735/j.issn.1671-170X.2015.12.B014
Cao Y, Cao R, Hedlund EM. R Regulation of tumor angiogenesis and metastasis by FGF and PDGF signaling pathways // J Mol Med (Berl). 2008;86(7):785–9. doi:10.1007/s00109-008-0337-z
Krzeszinski JY, Wan Y. New therapeutic targets for cancer bone metastasis // Trends in Pharmacological Sciences. 2015;36(6):360–373. doi:10.1016/j.tips.2015.04.006
Ma X, Yu J. Role and progression of bone microenvironment in the development of bone metastasis in malignant tumors // J Clin Pathol Res. 2019;39(11):2514–2518. doi :10.3978/j.issn.2095-6959.2019.11.028
Paget S. The distribution of secondary growths in cancer of the breast // Cancer Metastasis Rev. 1989;8:98–101.
Hiraga T. Bone metastasis: Interaction between cancer cells and bone microenvironment // J Oral Biosci. 2019;61(2):95–98. doi:10.1016/j.job.2019.02.002
Tu Q, Jin Z, Fix A et al. Targeted overexpression of BSP in osteoclasts promotes bone metastasis of breast cancer cells // Journal of Cellular Physiology, 2010;218(1):135–145. doi :10.1002/jcp.21576
Chiang AC, Massagué J. Molecular basis of metastasis // New England Journal of Medicine. 2008;359(26):2814–23. doi:10.1056/NEJMra0805239
Elazar V, Adwan H, Golomb G et al. Sustained delivery and efficacy of polymeric nanoparticles containing osteopontin and bone sialoprotein antisenses in rats with breast cancer bone metastasis // International Journal of Cancer Journal International Du Cancer. 2010;126(7):1749–1760. doi:10.1002/ijc.24890
Anract P, Biau D, Boudou-Rouquette P. Metastatic fractures of long limb bones // Orthop Traumatol Surg Res. 2017;103(1S):S41–S51. doi:10.1016/j.otsr.2016.11.001
Augsten M, Hägglöf C, Peña C et al. A Digest on the Role of the Tumor Microenvironment in Gastrointestinal Cancers // Cancer Microenvironment. 2010;3(1):167–176. doi:10.1007/s12307-010-0040-9
Yao Zhihong, Han Lei, Yang Zuozhang. Research progress of bone metastasis mechanism of malignant tumor // Chin J Metastatic Cancer. 2019;002(001):56–61. doi:10.3760/cma.j.issn.2096-5400.2019.01.012
Futakuchi M, Fukamachi K, Suzui M. Heterogeneity of tumor cells in the bone microenvironment: Mechanisms and therapeutic targets for bone metastasis of prostate or breast cancer // Adv Drug Deliv Rev. 2016;99(Pt B):206–211. doi:10.1016/j.addr.2015.11.017
Altieri B, Di Dato C, Martini C et al. Bone Metastases in Neuroendocrine Neoplasms: From Pathogenesis to Clinical Management // Cancers (Basel). 2019;11(9):1332. doi:10.3390/cancers11091332
Xiang L, Gilkes DM. The Contribution of the Immune System in Bone Metastasis Pathogenesis // Int J Mol Sci. 2019;20(4):999. doi:10.3390/ijms20040999
Müller A, Homey B, Soto H et al. Involvement of chemokine receptors in breast cancer metastasis // Nature. 2001;410(6824):50–6. doi:10.1038/35065016
Zhao E, Wang L, Dai J et al. Regulatory T cells in the bone marrow microenvironment in patients with prostate cancer // Oncoimmunology. 2012;1(2):152–161. doi:10.4161/onci.1.2.18480
Mao Y, Xue P, Li LL et al. Advances in Molecular Mechanisms of Early Bone Metastasis // Cancer Res Prev Treat. 2019;46(9):856–860. doi:10.3971/j.issn.1000-8578.2019.19.0634
Sawant A, Hensel JA, Chanda D et al. Depletion of plasmacytoid dendritic cells inhibits tumor growth and prevents bone metastasis of breast cancer cells // J Immunol. 2012;189(9):4258–4265. doi:10.4049/jimmunol.1101855
Schernberg A, Blanchard P, Chargari C et al. Neutrophils, a candidate biomarker and target for radiation therapy? // Acta Oncol. 2017;56(11):1522–1530. doi:10.1080/0284186X.2017.1348623
Semenza Gregg L.The hypoxic tumor microenvironment: A driving force for breast cancer progression // Biochim Biophys Acta. 2016;1863(3):382–391. doi:10.1016/j.bbamcr.2015.05.036
Bendinelli P, Maroni P, Matteucci E et al. Cell and Signal Components of the Microenvironment of Bone Metastasis Are Affected by Hypoxia // Int J Mol Sci. 2016;17(5):706. doi:10.3390/ijms17050706
Rankin EB, Giaccia AJ. Hypoxic control of metastasis // Science. 2016;352(6282):175–80. doi:10.1126/science.aaf4405
Prabhakar NR, Semenza GL. Adaptive and maladaptive cardiorespiratory responses to continuous and intermittent hypoxia mediated by hypoxia-inducible factors 1 and 2 // Physiol Rev. 2012;92(3):967–1003. doi:10.1152/physrev.00030.2011
Spencer JA, Ferraro F, Roussakis E et al. Direct measurement of local oxygen concentration in the bone marrow of live animals // Nature. 2014;508(7495):269–273. doi:10.1038/nature13034
Hiraga T. Hypoxic Microenvironment and Metastatic Bone Disease // Int J Mol Sci. 2018;19(11):3523. doi:10.3390/ijms19113523
Ibrahim-Hashim A, Estrella V. Acidosis and cancer: from mechanism to neutralization // Cancer Metastasis Rev. 2019;38(1–2):149–155. doi:10.1007/s10555-019-09787-4
Di Pompo G, Lemma S, Canti L et al. Intratumoral acidosis fosters cancer-induced bone pain through the activation of the mesenchymal tumor-associated stroma in bone metastasis from breast carcinoma // Oncotarget. 2017;8(33):54478–54496. doi:10.18632/oncotarget.17091
Arnett TR. Acidosis, hypoxia and bone // Arch Biochem Biophys. 2010;503(1):103–109. doi:10.1016/j.abb.2010.07.021
Tiedemann K, Hussein O, Komarova SV. Role of Altered Metabolic Microenvironment in Osteolytic Metastasis // Front Cell Dev Biol. 2020;8:435. doi:10.3389/fcell.2020.00435
Avnet S, Di Pompo G, Lemma S et al. Cause and effect of microenvironmental acidosis on bone metastases // Cancer Metastasis Rev. 2019;38(1–2):133–147. doi:10.1007/s10555-019-09790-9
Nagae M, Hiraga T, Yoneda T. Acidic microenvironment created by osteoclasts causes bone pain associated with tumor colonization // J Bone Miner Metab. 2007;25(2):99–104. doi:10.1007/s00774-006-0734-8
Di Pompo G, Cortini M, Baldini N et al. Acid Microenvironment in Bone Sarcomas // Cancers (Basel). 2021;13(15):3848. doi:10.3390/cancers13153848
Avnet S, Di Pompo G, Chano T et al. Cancer-associated mesenchymal stroma fosters the stemness of osteosarcoma cells in response to intratumoral acidosis via NF-κB activation // Int J Cancer. 2017;140(6):1331–1345. doi:10.1002/ijc.30540
Maroto R, Kurosky A, Hamill OP. Mechanosensitive Ca(2+) permeant cation channels in human prostate tumor cells // Channels (Austin). 2012;6(4):290–307. doi :10.4161/chan.21063
Zhang C, Zhang T, Zou J et al. Structural basis for regulation of human calcium-sensing receptor by magnesium ions and an unexpected tryptophan derivative co-agonist // Sci Adv. 2016;2(5):e1600241. doi:10.1126/sciadv.1600241
Das S, Clézardin P, Kamel S et al. The CaSR in Pathogenesis of Breast Cancer: A New Target for Early Stage Bone Metastases // Front Oncol. 2020;10:69. doi:10.3389/fonc.2020.00069
Xin XY, Li M, Wang HB. Research Progress of Calcium Ion Sensitive Receptor in Tumor // Guangdong Medical Journal. 2018(S1):272–275. doi:10.13820/j.cnki.gdyx.2018.s1.097
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
© АННМО «Вопросы онкологии», Copyright (c) 2022