The Prospects for the Targeted Therapy of KRAS-Mutated Lung Cancer
##article.numberofdownloads## 22
##article.numberofviews## 51
pdf (Русский)

Keywords

lung cancer
targeted therapy
mutation
KRAS gene

How to Cite

Murtazin, A. I., Aleksakhina, S. N., Shestakova, A. D., Levchenko, E. V., & Imyanitov, E. N. (2025). The Prospects for the Targeted Therapy of KRAS-Mutated Lung Cancer. Voprosy Onkologii, 70(6), 1048–1058. https://doi.org/10.37469/0507-3758-2024-70-6-1048-1058

Abstract

KRAS mutations are found in about 15-30 % of lung adenocarcinomas. Activation of KRAS leads to upregulation of the MAPK pathway and ultimately to uncontrolled proliferation of tumor cells. While the use of kinase inhibitors, e.g. EGFR or BRAF, has recently revolutionized the treatment of malignant tumors, the development of KRAS antagonists has encountered significant difficulties. To date, specific inhibitors of mutant KRAS have been developed only for glycine to cysteine substitution in the 12th codon (KRAS G12C). This mutation, unlike many other types of damage to RAS family genes in lung tumors, is mainly seen in smokers and is therefore associated with a high mutational burden and greater sensitivity to immunotherapy. Clinical trials of the KRAS(G12C) inhibitors sotorasib and adagrasib have been conducted primarily in lung cancer patients who had received chemotherapy or immune checkpoint inhibitors. Despite the relatively high disease control rates, the median time to progression was only a few months. Randomized comparison of sotorasib and docetaxel showed no difference in overall survival. These data differ significantly from the results of successful clinical trials of other mutant protein inhibitors. The search is on for a "universal" drug that can target tumors with all types of mutations in the RAS family genes. Trials of inhibitors of farnesyltransferase (an enzyme involved in the post-translational modification of RAS proteins) were unsuccessful because alternative pathways of this modification process were initiated. Attempts to manipulate RAS targets, particularly MEK kinase, have also failed, although some clinical observations have demonstrated the prospects of adding autophagy inhibitors to such regimens. Despite the limitations mentioned above, RAS status analysis remains an important part of lung cancer screening, as the detection of RAS gene mutations can convincingly exclude the presence of driver events in the EGFR, ALK, ROS1, NTRK1-3, RET, MET, BRAF and HER2 kinases.

https://doi.org/10.37469/0507-3758-2024-70-6-1048-1058
##article.numberofdownloads## 22
##article.numberofviews## 51
pdf (Русский)

References

Herbst R.S., Morgensztern D., Boshoff C. The biology and management of non-small cell lung cancer. Nature. 2018; 553(7689): 446-454.-DOI: https://doi.org/10.1038/nature25183.

Campbell J.D., Alexandrov A., Kim J., et al. Distinct patterns of somatic genome alterations in lung adenocarcinomas and squamous cell carcinomas. Nat Genet. 2016; 48(6): 607-616.-DOI: https://doi.org/10.1038/ng.3564.

König D., Savic Prince S., Rothschild S.I. Targeted therapy in advanced and metastatic non-small cell lung cancer. An update on treatment of the most important actionable oncogenic driver alterations. Cancers (Basel). 2021; 13(4): 804.-DOI: https://doi.org/10.3390/cancers13040804.

Midha A., Dearden S., McCormack R. EGFR mutation incidence in non-small-cell lung cancer of adenocarcinoma histology: a systematic review and global map by ethnicity (mutMapII). Am J Cancer Res. 2015; 5(9): 2892-2911.

Мазуренко Н.Н., Цыганова И.В., Гагарин И.М., et al. Мутации EGFR и KRAS, важные для таргетной терапии немелкоклеточного рака легких. Молекулярная медицина. 2013; 6: 55-59.-EDN: RVTRJV. [Mazurenko N.N., Tsyganova I.V., Gagarin I.M., et al. EGFR and KRAS mutations important for non-small cell lung cancer target therapy. Molecular Medicine = Molekulyarnaya Meditsina. 2013; 6: 55-59.-EDN: RVTRJV. (In Rus)].

Cascetta P., Marinello A., Lazzari C., et al. KRAS in NSCLC: State of the Art and Future Perspectives. Cancers (Basel). 2022; 14(21): 5430.-DOI: https://doi.org/10.3390/cancers14215430.

Acker F., Stratmann J., Aspacher L., et al. KRAS mutations in squamous cell carcinomas of the lung. Front Oncol. 2021; 11: 788084.-DOI: https://doi.org/10.3389/fonc.2021.788084.

Огнерубов Н.А., Сычев В.Д. Мутации гена KRAS при немелкоклеточном раке легких. Клиническая лабораторная диагностика. 2021; 66(4): 50.-DOI: https://doi.org/10.21294/1814-4861-2022-21-1-115-121.-EDN: CYDYOM. [Ognerubov N.A., Sychev V.D. Mutation in the KRAS gene as a predictor of the effectiveness of immunotherapy for non-small cell lung cancer. Clinical Laboratory Diagnostics = Klinicheskaya Laboratornaya Diagnostika. 2021; 66(4): 50.-DOI: https://doi.org/10.21294/1814-4861-2022-21-1-115-121.-EDN: CYDYOM. (In Rus)].

Назаров В.Д., Мусаелян А.А., Лапин С.В., et al. Комплексный подход определения мутаций в генах EGFR, KRAS, BRAF и HER2 у пациентов немелкоклеточным раком лёгкого. Материалы V Петербургского международного онкологического форума «Белые ночи 2018»: тезисы. СПб.: АННМО «Вопросы онкологии». 2019: 41.-EDN ONLWGB. [Nazarov V.D., Musaelyan A.A., Lapin S.V., et al. Integrated approach of mutation detection in EGFR, KRAS, BRAF and HER2 genes in patients with non-small cell lung cancer. Materials of the V Petersburg International Oncological Forum «White Nights 2019»: abstracts. St. Petersburg: ANSMO «Voprosy Oncologii». 2019: 41.-EDN ONLWGB. (In Rus)].

Mitiushkina N.V., Kholmatov M.M., Venina A.R., et al. PCR-based detection of EGFR, ALK, KRAS and BRAF mutations in Russian patients with lung adenocarcinoma: a single-center experience. Neoplasma. 2018; 65(6): 972-979.-DOI: https://doi.org/10.4149/neo_2018_171225N843.

Slebos R.J., Kibbelaar R.E., Dalesio O., et al. K-ras oncogene activation as a prognostic marker in adenocarcinoma of the lung. N Engl J Med. 1990; 323(9): 561-565.-DOI: https://doi.org/10.1056/NEJM199008303230902.

Pao W., Wang T.Y., Riely G.J., et al. KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib. PLoS Med. 2005; 2(1): e17.-DOI: https://doi.org/10.1371/journal.pmed.0020017.

Arbour K.C., Rizvi H., Plodkowski A.J., et al. Treatment outcomes and clinical characteristics of patients with KRAS-G12C-mutant non-small cell lung cancer. Clin Cancer Res. 2021; 27(8): 2209-2215.-DOI: https://doi.org/10.1158/1078-0432.CCR-20-4023.

Landre T., Justeau G., Assié J.B., et al. Anti-PD-(L)1 for KRAS-mutant advanced non-small-cell lung cancers: a meta-analysis of randomized-controlled trials. Cancer Immunol Immunother. 2022; 71(3): 719-726.-DOI: https://doi.org/10.1007/s00262-021-03031-1.

Peng L., Guo J., Kong L., et al. Efficacy of immunotherapy in KRAS-mutant advanced NSCLC: A real-world study in a Chinese population. Front Oncol. 2023; 12: 1070761.-DOI: https://doi.org/10.3389/fonc.2022.1070761.

Harvey J.J. An unidentified virus which causes the rapid production of tumours in mice. Nature. 1964; 204: 1104-1105.-DOI: https://doi.org/10.1038/2041104b0.

Chang E.H., Furth M.E., Scolnick E.M., et al. Tumorigenic transformation of mammalian cells induced by a normal human gene homologous to the oncogene of Harvey murine sarcoma virus. Nature. 1982; 297(5866): 479-483.-DOI: https://doi.org/10.1038/297479a0.

Uprety D., Adjei A.A. KRAS: from undruggable to a druggable cancer target. Cancer Treat Rev. 2020; 89: 102070.-DOI: https://doi.org/10.1016/j.ctrv.2020.102070.

Liu P., Wang Y., Li X. Targeting the untargetable KRAS in cancer therapy. Acta Pharm Sin B. 2019; 9(5): 871-9.-DOI: https://doi.org/10.1016/j.apsb.2019.03.002.

Downward J. Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer. 2003; 3(1): 11–22.-DOI: https://doi.org/10.1038/nrc969.

Ostrem J.M., Shokat K.M. Direct small-molecule inhibitors of KRAS: from structural insights to mechanism-based design. Nat Rev Drug Discov. 2016; 15(11): 771-785.-DOI: https://doi.org/10.1038/nrd.2016.139.

Westcott P.M., To M.D. The genetics and biology of KRAS in lung cancer. Chin J Cancer. 2013; 32(2): 63-70.-DOI: https://doi.org/10.5732/cjc.012.10098.

Bourne H.R., Sanders D.A., McCormick F. The GTPase superfamily: a conserved switch for diverse cell functions. Nature. 1990; 348(6297): 125-132.-DOI: https://doi.org/10.1038/348125a0.

Cherfils J., Zeghouf M. Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiol Rev. 2013; 93(1): 269-309.-DOI: https://doi.org/10.1152/physrev.00003.2012.

Waters S.B., Holt K.H., Ross S.E., et al. Desensitization of RAS activation by a feedback disassociation of the SOS-Grb2 complex. J Biol Chem. 1995; 270(36): 20883-20886.-DOI: https://doi.org/10.1074/jbc.270.36.20883.

Punekar S.R., Velcheti V., Neel B.G., et al. The current state of the art and future trends in RAS-targeted cancer therapies. Nat Rev Clin Oncol. 2022; 19(10): 637-655.-DOI: https://doi.org/10.1038/s41571-022-00671-9.

Bos J.L., Rehmann H., Wittinghofer A. GEFs and GAPs: critical elements in the control of small G proteins. Cell. 2007; 129(5): 865-877.-DOI: https://doi.org/10.1016/j.cell.2007.05.018.

Hunter J.C., Manandhar A., Carrasco M.A., et al. Biochemical and structural analysis of common cancer-associated KRAS mutations. Mol Cancer Res. 2015; 13(9): 1325-1335.-DOI: https://doi.org/10.1158/1541-7786.MCR-15-0203.

Zebisch A., Troppmair J. Back to the roots: the remarkable RAF oncogene story. Cell Mol Life Sci. 2006; 63(11): 1314-1330.-DOI: https://doi.org/10.1007/s00018-006-6005-y.

Jirmanova L., Afanassieff M., Gobert-Gosse S., et al. Differential contributions of ERK and PI3-kinase to the regulation of cyclin D1 expression and to the control of the G1/S transition in mouse embryonic stem cells. Oncogene. 2002; 21(36): 5515-5528.-DOI: https://doi.org/10.1038/sj.onc.1205728.

Sadidi M., Lentz S.I., Feldman E.L. Hydrogen peroxide-induced Akt phosphorylation regulates Bax activation. Biochimie. 2009; 91(5): 577-585.-DOI: https://doi.org/10.1016/j.biochi.2009.01.010.

Simanshu D.K., Nissley D.V., McCormick F. RAS Proteins and Their Regulators in Human Disease. Cell. 2017; 170(1): 17-33.-DOI: https://doi.org/10.1016/j.cell.2017.06.009.

Passiglia F., Malapelle U., Del Re M., et al. KRAS inhibition in non-small cell lung cancer: Past failures, new findings and upcoming challenges. Eur J Cancer. 2020; 137: 57-68.-DOI: https://doi.org/10.1016/j.ejca.2020.06.023

Adderley H., Blackhall F.H., Lindsay C.R. KRAS-mutant non-small cell lung cancer: Converging small molecules and immune checkpoint inhibition. EBioMedicine. 2019; 41: 711-716.-DOI: https://doi.org/10.1016/j.ebiom.2019.02.049.

Barbacid M. ras genes. Annu Rev Biochem. 1987; 56: 779-827.-DOI: https://doi.org/10.1146/annurev.bi.56.070187.004023.

Gimple R.C., Wang X. RAS: Striking at the core of the oncogenic circuitry. Front Oncol. 2019; 9: 965.-DOI: https://doi.org/10.3389/fonc.2019.00965.

Hunter J.C., Gurbani D., Ficarro S.B., et al. In situ selectivity profiling and crystal structure of SML-8-73-1, an active site inhibitor of oncogenic K-Ras G12C. Proc Natl Acad Sci USA. 2014; 111(24): 8895-8900.-DOI: https://doi.org/10.1073/pnas.1404639111.

Kwan A.K., Piazza G.A., Keeton A.B., et al. The path to the clinic: a comprehensive review on direct KRASG12C inhibitors. J Exp Clin Cancer Res. 2022; 41(1): 27.-DOI: https://doi.org/10.1186/s13046-021-02225-w.

John J., Sohmen R., Feuerstein J., et al. Kinetics of interaction of nucleotides with nucleotide-free H-ras p21. Biochemistry. 1990; 29(25): 6058-6065.-DOI: https://doi.org/10.1021/bi00477a025.

Traut T.W. Physiological concentrations of purines and pyrimidines. Mol Cell Biochem. 1994; 140(1): 1-22.-DOI: https://doi.org/10.1007/BF00928361.

Ostrem J.M., Peters U., Sos M.L., et al. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature. 2013; 503(7477): 548-551.-DOI: https://doi.org/10.1038/nature12796.

Nichols R.J., Cregg J., Schulze C.J., et al. A next-generation tri-complex KRASG12C(ON) inhibitor directly targets the active, GTP-bound state of mutant RAS and may overcome resistance to KRASG12C(OFF) inhibition. Cancer Res. 2021; 81(13 Supplement): 1261.-DOI: https://doi.org/10.1158/1538-7445.AM2021-1261.

Adachi Y., Ito K., Hayashi Y., et al. Epithelial-to-mesenchymal transition is a cause of both intrinsic and acquired resistance to KRAS G12C inhibitor in KRAS G12C-mutant non-small cell lung cancer. Clin Cancer Res. 2020; 26: 5962–73.-DOI: https://doi.org/10.1158/1078-0432.CCR-20-2077.

Awad M.M., Liu S., Rybkin I.I., et al. Acquired resistance to KRASG12C inhibition in cancer. N Engl J Med. 2021; 384(25): 2382-2393.-DOI: https://doi.org/10.1056/NEJMoa2105281.

Luo J., Ostrem J., Pellini B., et al. Overcoming KRAS-mutant lung cancer. Am Soc Clin Oncol Educ Book. 2022; 42: 1-11.-DOI: https://doi.org/10.1200/EDBK_360354.

Ceddia S., Landi L., Cappuzzo F. KRAS-Mutant Non-Small-Cell Lung Cancer: From Past Efforts to Future Challenges. Int J Mol Sci. 2022; 23(16): 9391.-DOI: https://doi.org/10.3390/ijms23169391.

Rhett J.M., Khan I., O'Bryan J.P. Biology, pathology, and therapeutic targeting of RAS. Adv Cancer Res. 2020; 148: 69-146.-DOI: https://doi.org/10.1016/bs.acr.2020.05.002.

Yaeger R., Solit D.B. Overcoming adaptive resistance to KRAS inhibitors through vertical pathway targeting. Clin Cancer Res. 2020; 26(7): 1538-1540.-DOI: https://doi.org/10.1158/1078-0432.CCR-19-4060.

Corral de la Fuente E., Olmedo Garcia M.E., Gomez Rueda A., et al. Targeting KRAS in non-small cell lung cancer. Front Oncol. 2022; 11: 792635.-DOI: https://doi.org/10.3389/fonc.2021.792635.

Sun C., Hobor S., Bertotti A., et al. Intrinsic resistance to MEK inhibition in KRAS mutant lung and colon cancer through transcriptional induction of ERBB3. Cell Rep. 2014; 7(1): 86-93.-DOI: https://doi.org/10.1016/j.celrep.2014.02.045.

Lito P., Saborowski A., Yue J., et al. Disruption of CRAF-mediated MEK activation is required for effective MEK inhibition in KRAS mutant tumors. Cancer Cell. 2014; 25(5): 697-710.-DOI: https://doi.org/10.1016/j.ccr.2014.03.011.

Zhang X., Mao T., Xu H., et al. Synergistic blocking of RAS downstream signaling and epigenetic pathway in KRAS mutant pancreatic cancer. Aging (Albany NY). 2022; 14(8): 3597-3606.-DOI: https://doi.org/10.18632/aging.204031.

Mulcahy Levy J.M., Zahedi S., Griesinger A.M., et al. Autophagy inhibition overcomes multiple mechanisms of resistance to BRAF inhibition in brain tumors. Elife. 2017; 6: e19671.-DOI: https://doi.org/10.7554/eLife.19671.

Kinsey C.G., Camolotto S.A., Boespflug A.M., et al. Protective autophagy elicited by RAF→MEK→ERK inhibition suggests a treatment strategy for RAS-driven cancers [published correction appears in Nat Med. 2019 Mar 27]. Nat Med. 2019; 25(4): 620-627.-DOI: https://doi.org/10.1038/s41591-019-0367-9.

Bond M.J., Chu L., Nalawansha D.A., et al. Targeted degradation of oncogenic KRASG12C by VHL-recruiting PROTACs. ACS Cent Sci. 2020; 6(8): 1367-1375.-DOI: https://doi.org/10.1021/acscentsci.0c00411.

Poongavanam V., Kihlberg J. PROTAC cell permeability and oral bioavailability: a journey into uncharted territory. Future Med Chem. 2022; 14(3): 123-126.-DOI: https://doi.org/10.4155/fmc-2021-0208.

Vidimar V., Park M., Stubbs C.K., et al. Proteolytic pan-RAS cleavage leads to tumor regression in patient-derived pancreatic cancer xenografts. Mol Cancer Ther. 2022; 21(5): 810-820.-DOI: https://doi.org/10.1158/1535-7163.MCT-21-0550.

Bear A.S., Blanchard T., Cesare J., et al. Biochemical and functional characterization of mutant KRAS epitopes validates this oncoprotein for immunological targeting. Nat Commun. 2021; 12(1): 4365.-DOI: https://doi.org/10.1038/s41467-021-24562-2.

Hong D.S., Fakih M.G., Strickler J.H., et al. KRASG12C Inhibition with Sotorasib in Advanced Solid Tumors. N Engl J Med. 2020; 383(13): 1207-1217.-DOI: 10.1056/NEJMoa1917239. Epub 2020 Sep 20. PMID: 32955176; PMCID: PMC7571518.

Skoulidis F., Li B.T., Dy G.K., et al. Sotorasib for Lung Cancers with KRAS p.G12C Mutation. N Engl J Med. 2021; 384(25): 2371-2381.-DOI: https://doi.org/10.1056/NEJMoa2103695.

de Langen A.J., Johnson M.L., Mazieres J., et al. Sotorasib versus docetaxel for previously treated non-small-cell lung cancer with KRASG12C mutation: a randomised, open-label, phase 3 trial. Lancet. 2023; 401(10378): 733-746.-DOI: https://doi.org/10.1016/S0140-6736(23)00221-0.

Sotorasib Activity in Subjects With Advanced Solid Tumors With KRAS p.G12C Mutation (CodeBreak 101). Amgen. Clinical trial record. ClinicalTrials.gov: NIH. 2017; NCT04185883: URL: https://www.clinicaltrials.gov/study/NCT04185883 (11.01.2025).

Riely G.J., Ou S-H.I., Rybkin I., et al. 99O_PR KRYSTAL-1: Activity and preliminary pharmacodynamic (PD) analysis of adagrasib (MRTX849) in patients (Pts) with advanced non–small cell lung cancer (NSCLC) harboring KRASG12C mutation. Journal of Thoracic Oncology. 2021; 16(4): S751-S752.-DOI: https://doi.org/ 10.1016/S1556-0864(21)01941-9

Jänne P.A., Riely G.J., Gadgeel S.M., et al. Adagrasib in Non-Small-Cell Lung Cancer Harboring a KRASG12C Mutation. N Engl J Med. 2022; 387(2): 120-131.-DOI: https://doi.org/10.1056/NEJMoa2204619.

Phase 3 Study of MRTX849 (Adagrasib) vs Docetaxel in Patients With Advanced Non-Small Cell Lung Cancer With KRAS G12C Mutation (KRYSTAL-12). Mirati Therapeutics Inc. Clinical trial record. ClinicalTrials.gov: NIH. 2021; NCT04685135: URL: https://www.clinicaltrials.gov/study/NCT04685135 (11.01.2025).

Adagrasib in Combination With TNO155 in Patients With Cancer (KRYSTAL 2). Mirati Therapeutics Inc. Clinical trial record. ClinicalTrials.gov: NIH. 2020; NCT04330664: URL: https://www.clinicaltrials.gov/study/NCT04330664 (11.01.2025).

Jänne P.A., Smit E.F., de Marinis F., et al. LBA4 Preliminary safety and efficacy of adagrasib with pembrolizumab in treatment-naïve patients with advanced non-small cell lung cancer (NSCLC) harboring a KRASG12C mutation. Immuno-Oncology and Technology. 2022; 16: 100360.-DOI: https://doi.org/10.1016/j.iotech.2022.100360.

Adagrasib in Combination With BI 1701963 in Patients With Cancer (KRYSTAL 14). Mirati Therapeutics Inc. Clinical trial record. ClinicalTrials.gov: NIH. 2022; NCT04975256: URL: https://www.clinicaltrials.gov/study/NCT04975256 (11.01.2025).

Lindsay C.R., Veluswamy R., Castro G., et al., A phase II trial of JDQ443 in KRAS G12C-mutated NSCLC with PD-L1 expression <1% or PD-L1 expression ≥1% and an STK11 co-mutation. JCO. 2023; 41: TPS9158-TPS9158.-DOI: https://doi.org/10.1200/JCO.2023.41.16_suppl.TPS9158.

Study of JDQ443 in Comparison With Docetaxel in Participants With Locally Advanced or Metastatic KRAS G12C Mutant Non-small Cell Lung Cancer (KontRASt-02). Novartis Pharmaceuticals. Clinical trial record. ClinicalTrials.gov: NIH. 2022; NCT05132075: URL: https://www.clinicaltrials.gov/study/NCT05132075 (11.01.2025).

A Study to Test Different Doses of BI 1701963 Alone and Combined With Trametinib in Patients With Different Types of Advanced Cancer (Solid Tumours With KRAS Mutation). Boehringer Ingelheim. Clinical trial record. ClinicalTrials.gov: NIH. 2019; NCT04111458: URL: https://www.clinicaltrials.gov/study/NCT04111458 (11.01.2025).

A Study to Find a Safe and Effective Dose of BI 1701963 Alone and in Combination With BI 3011441 in Patients With Advanced Cancer and a Certain Mutation (Kirsten Rat Sarcoma Viral Oncogene Homologue [KRAS]). Boehringer Ingelheim. Clinical trial record. ClinicalTrials.gov: NIH. 2022; NCT04835714: URL: https://www.clinicaltrials.gov/study/NCT04835714 (11.01.2025).

Phase I Trial of Defactinib and VS-6766. (FRAME). Institute of Cancer Research, United Kingdom. Clinical trial record. ClinicalTrials.gov: NIH. 2023; NCT03875820: URL: https://www.clinicaltrials.gov/study/NCT03875820 (11.01.2025).

Blumenschein G.R., Smit E.F., Planchard D., et al. A randomized phase II study of the MEK1/MEK2 inhibitor trametinib (GSK1120212) compared with docetaxel in KRAS-mutant advanced non-small-cell lung cancer (NSCLC). Ann Oncol. 2015; 26(5): 894-901.-DOI: https://doi.org/10.1093/annonc/mdv072.

Carter C.A., Rajan A., Keen C., et al. Selumetinib with and without erlotinib in KRAS mutant and KRAS wild-type advanced nonsmall-cell lung cancer. Ann Oncol. 2016; 27(4): 693-699.-DOI: https://doi.org/10.1093/annonc/mdw008.

Jänne P.A., van den Heuvel M.M., Barlesi F., et al. Selumetinib Plus Docetaxel Compared With Docetaxel Alone and Progression-Free Survival in Patients With KRAS-Mutant Advanced Non-Small Cell Lung Cancer: The SELECT-1 Randomized Clinical Trial. JAMA. 2017; 317(18): 1844-1853.-DOI: https://doi.org/10.1001/jama.2017.3438.

Trametinib and Hydroxychloroquine in Treating Patients With Pancreatic Cancer (THREAD). University of Utah. Clinical trial record. ClinicalTrials.gov: NIH. 2018; NCT03825289: URL: https://www.clinicaltrials.gov/study/NCT03825289 (11.01.2025).

Atezolizumab and Cobimetinib in Treating Patients With Metastatic, Recurrent, or Refractory Non-small Cell Lung Cancer. National Cancer Institute (NCI). Clinical trial record. ClinicalTrials.gov: NIH. 2023; NCT03600701: URL: https://www.clinicaltrials.gov/study/NCT03600701 (11.01.2025).

A Study of mRNA-5671/ V941 as Monotherapy and in Combination With Pembrolizumab (V941-001). Merck Sharp & Dohme LLC. Clinical trial record. ClinicalTrials.gov: NIH. 2022; NCT03948763: URL: https://www.clinicaltrials.gov/study/NCT03948763 (11.01.2025).

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

© АННМО «Вопросы онкологии», Copyright (c) 2024