Микросателлитная нестабильность: нюансы лабораторной диагностики (позиция Межрегиональной организации молекулярных генетиков в онкологии и онкогематологии)
Загрузок: 513
Просмотров: 670
pdf

Ключевые слова

микросателлитная нестабильность
система репарации неспаренных оснований ДНК
молекулярно-генетический анализ
иммуногистохимический анализ

Как цитировать

Демидова, И., Филипенко, М., Цуканов, А., & Имянитов, Е. (2023). Микросателлитная нестабильность: нюансы лабораторной диагностики (позиция Межрегиональной организации молекулярных генетиков в онкологии и онкогематологии). Вопросы онкологии, 69(2), 174–179. https://doi.org/10.37469/0507-3758-2023-69-2-174-179

Аннотация

Микросателлитной нестабильностью (microsatellite instability, MSI) называется феномен накопления мутаций (делеций и инсерций) в коротких повторяющихся последовательностях ДНК. Наиболее частой причиной MSI является дефект системы репарации неспаренных оснований ДНК (mismatch repair deficiency, dMMR). Анализ MSI/dMMR используется при диагностике синдрома Линча, а также для отбора пациентов на терапию ингибиторами контрольных точек иммунного ответа. Тестирование MSI подразумевает анализ длины нескольких информативных микросателлитных маркеров при помощи ПЦР или NGS, а выявление dMMR основывается на иммуногистохимическом анализе экспрессии белков MLH1, MSH2, MSH6 и PMS2. Эти методы можно считать взаимозаменяемыми в случае колоректального рака, поэтому при анализе карцином толстой кишки выбор между тестированием MSI и dMMR может определяться организационными и экономическими предпочтениями. Карциномы с низкой пролиферативной активностью, в т.ч. ассоциированные с синдромом Линча, могут демонстрировать dMMR в отсутствие MSI, при этом они отличаются низкой мутационной нагрузкой и отсутствием чувствительности к иммунотерапии. Процедуры выявления микросателлитной нестабильности в неколоректальных опухолях остаются недостаточно стандартизованными и нуждаются в дальнейшем совершенствовании.

https://doi.org/10.37469/0507-3758-2023-69-2-174-179
Загрузок: 513
Просмотров: 670
pdf

Библиографические ссылки

Richman S. Deficient mismatch repair: Read all about it (Review). Int J Oncol. 2015;47(4):1189202. doi:10.3892/ijo.2015.3119.

Dumache R, Ciocan V, Muresan C, et al. Molecular DNA analysis in forensic identification. Clin Lab. 2016;62(12):2458. doi:10.7754/clin.lab.2015.150414.

Bzymek M, Lovett ST. Instability of repetitive DNA sequences: the role of replication in multiple mechanisms. Proc Natl Acad Sci U S A. 2001;98(15):831925. doi:10.1073/pnas.111008398.

Lin EI, Tseng LH, Gocke CD, et al. Mutational profiling of colorectal cancers with microsatellite instability, Oncotarget. 2015;6(39):4233444. doi:10.18632/oncotarget.5997.

Jiricny J. Postreplicative mismatch repair. Cold Spring Harb Perspect Biol. 2013;5(4):a012633. doi:10.1101/cshperspect.a012633.

Nebot-Bral L, Coutzac C, Kannouche PL, et al. Why is immunotherapy effective (or not) in patients with MSI/MMRD tumors? Bull Cancer. 2019;106(2):105113. doi:10.1016/j.bulcan.2018.08.007.

Цуканов А.С., Демидова И.А., Цаур Г.А. и др. Диагностика синдрома Линча у онкологических пациентов: позиция Межрегиональной организации молекулярных генетиков в онкологии и онкогематологии. Вопр. онкол. [В печати]. [Tsukanov AS, Demidova IA, Tsaur GA, et al. Diagnosis of Lynch syndrome in cancer patients: the position of the Interregional organization of molecular geneticists in Oncology and Oncohematology. Vopr Onkol. [in print] (In Russ)].

Veigl ML, Kasturi L, Olechnowicz J, et al. Biallelic inactivation of hMLH1 by epigenetic gene silencing, a novel mechanism causing human MSI cancers. Proc Natl Acad Sci U S A. 1998;95(15):8698702. doi:10.1073/pnas.95.15.8698.

Le DT, Durham JN, Smith KN, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science. 2017;357(6349):409413. doi:10.1126/science.aan6733.

Overman MJ, McDermott R, Leach JL, et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study. Lancet Oncol. 2017;18(9):11821191. doi:10.1016/S1470-2045(17)30422-9.

Overman MJ, Lonardi S, Wong KYM, et al. Durable clinical benefit with nivolumab plus ipilimumab in DNA mismatch repair-deficient/microsatellite instability-high metastatic colorectal cancer. J Clin Oncol. 2018;36(8):773779. doi:10.1200/JCO.2017.76.9901.

Lemery S, Keegan P, Pazdur R. First FDA approval agnostic of cancer site - when a biomarker defines the indication. N Engl J Med. 2017;377(15):14091412. doi:10.1056/NEJMp1709968.

Ministry of Health of the Russian Federation. Clinical Guidelines Rubricator. [Internet]. [cited 2022 Nov 6]. Available from: https://cr.minzdrav.gov.ru/clin_recomend.

Luchini C, Bibeau F, Ligtenberg MJL, et al. ESMO recommendations on microsatellite instability testing for immunotherapy in cancer, and its relationship with PD-1/PD-L1 expression and tumour mutational burden: a systematic review-based approach. Ann Oncol. 2019;30(8):12321243. doi:10.1093/annonc/mdz116.

Wu X, Snir O, Rottmann D, et al. Minimal microsatellite shift in microsatellite instability high endometrial cancer: a significant pitfall in diagnostic interpretation. Mod Pathol. 2019;32(5):650658. doi:10.1038/s41379-018-0179-3.

Tachon G, Frouin E, Karayan-Tapon L, et al. Heterogeneity of mismatch repair defect in colorectal cancer and its implications in clinical practice. Eur J Cancer. 2018;95:112116. doi:10.1016/j.ejca.2018.01.087.

Chen W, Hampel H, Pearlman R, et al. Unexpected expression of mismatch repair protein is more commonly seen with pathogenic missense than with other mutations in Lynch syndrome. Hum Pathol. 2020;103:3441. doi:10.1016/j.humpath.2020.07.001.

Cortes-Ciriano I, Lee S, Park WY, et al. A molecular portrait of microsatellite instability across multiple cancers. Nat Commun. 2017;8:15180. doi:10.1038/ncomms15180.

Long DR, Waalkes A, Panicker VP, et al. Identifying Optimal Loci for the Molecular Diagnosis of Microsatellite Instability. Clin Chem. 2020;66(10):13101318. doi:10.1093/clinchem/hvaa177.

Karamurzin Y, Zeng Z, Stadler ZK, et al. Unusual DNA mismatch repair-deficient tumors in Lynch syndrome: a report of new cases and review of the literature. Hum Pathol. 2012;43(10):167787. doi:10.1016/j.humpath.2011.12.012.

Latham A, Srinivasan P, Kemel Y, et al. Microsatellite Instability Is Associated With the Presence of Lynch Syndrome Pan-Cancer. J Clin Oncol. 2019;37(4):286295. doi:10.1200/JCO.18.00283. Erratum in: J Clin Oncol. 2019;37(11):942.

Shia J. The diversity of tumours with microsatellite instability: molecular mechanisms and impact upon microsatellite instability testing and mismatch repair protein immunohistochemistry. Histopathology. 2021;78(4):485497. doi:10.1111/his.14271.

Jaffrelot M, Fares N, Brunac AC, et al. An unusual phenotype occurs in 15% of mismatch repair-deficient tumors and is associated with non-colorectal cancers and genetic syndromes. Mod Pathol. 2022;35(3):427437. doi:10.1038/s41379-021-00918-3.

Wang C, Zhang L, Vakiani E, et al. Detecting mismatch repair deficiency in solid neoplasms: immunohistochemistry, microsatellite instability, or both? Mod Pathol. 2022; 35(11):15151528. doi:10.1038/s41379-022-01109-4.

Mandal R, Samstein RM, Lee KW, et al. Genetic diversity of tumors with mismatch repair deficiency influences anti-PD-1 immunotherapy response. Science. 2019;364(6439):485491. doi:10.1126/science.aau0447.

Smithgall MC, Remotti H, Hsiao SJ, et al. Investigation of discrepant mismatch repair immunohistochemistry and microsatellite instability polymerase chain reaction test results for gynecologic cancers using next-generation sequencing. Hum Pathol. 2022;119:4150. doi:10.1016/j.humpath.2021.10.004.

Kim TM, Laird PW, Park PJ, The landscape of microsatellite instability in colorectal and endometrial cancer genomes. Cell. 2013;155(4):85868. doi:10.1016/j.cell.2013.10.015.

Evrard C, Tachon G, Randrian V, et al. Microsatellite Instability: Diagnosis, Heterogeneity, Discordance, and Clinical Impact in Colorectal Cancer. Cancers (Basel). 2019;11(10):1567. doi:10.3390/cancers11101567.

Niu B, Ye K, Zhang Q, et al. MSIsensor: microsatellite instability detection using paired tumor-normal sequence data. Bioinformatics. 2014;30(7):10156. doi:10.1093/bioinformatics/btt755.

Salipante SJ, Scroggins SM, Hampel HL, et al. Microsatellite instability detection by next generation sequencing. Clin Chem. 2014;60(9):11929. doi:10.1373/clinchem.2014.223677.

Huang MN, McPherson JR, Cutcutache I, et al. MSIseq: Software for Assessing Microsatellite Instability from Catalogs of Somatic Mutations. Sci Rep. 2015;5:13321. doi:10.1038/srep13321.

Hause RJ, Pritchard CC, Shendure J, et al. Classification and characterization of microsatellite instability across 18 cancer types. Nat Med. 2016;22(11):13421350. doi:10.1038/nm.4191. Erratum in: Nat Med. 2017;23(10):1241. Erratum in: Nat Med. 2018;24(4):525.

Kautto EA, Bonneville R, Miya J, et al. Performance evaluation for rapid detection of pan-cancer microsatellite instability with MANTIS. Oncotarget. 2017;8(5):74527463. doi:10.18632/oncotarget.13918.

Middha S, Zhang L, Nafa K, et al. Reliable Pan-Cancer Microsatellite Instability Assessment by Using Targeted Next-Generation Sequencing Data. JCO Precis Oncol. 2017;(1):1–17. doi:10.1200/PO.17.00084.

Vanderwalde A, Spetzler D, Xiao N, et al. Microsatellite instability status determined by next-generation sequencing and compared with PD-L1 and tumor mutational burden in 11,348 patients. Cancer Med. 2018;7(3):74656. doi:10.1002/cam4.1372.

Wang C, Liang C. MSIpred: a python package for tumor microsatellite instability classification from tumor mutation annotation data using a support vector machine. Sci Rep. 2018;8(1):17546. doi:10.1038/s41598-018-35682-z.

Jia P, Yang X, Guo L, et al. MSIsensor-pro: fast, accurate, and matched-normal-sample-free detection of microsatellite instability. Genomics Proteomics Bioinformatics. 2020;18(1):6571. doi:10.1016/j.gpb.2020.02.001.

Pang J, Gindin T, Mansukhani M, et al. Microsatellite instability detection using a large next-generation sequencing cancer panel across diverse tumour types. J Clin Pathol. 2020;73(2):8389. doi:10.1136/jclinpath-2019-206136.

Ratovomanana T, Cohen R, Svrcek M, et al. Performance of Next-Generation Sequencing for the Detection of Microsatellite Instability in Colorectal Cancer With Deficient DNA Mismatch Repair. Gastroenterology. 2021;161(3):814826.e7. doi:10.1053/j.gastro.2021.05.007.

Yu F, Makrigiorgos A, Leong KW, et al. Sensitive detection of microsatellite instability in tissues and liquid biopsies: Recent developments and updates. Comput Struct Biotechnol J. 2021;19:493140. doi:10.1016/j.csbj.2021.08.037.

Лицензия Creative Commons

Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-NoDerivatives» («Атрибуция — Некоммерческое использование — Без производных произведений») 4.0 Всемирная.

© АННМО «Вопросы онкологии», Copyright (c) 2023