Молекулярная диагностика нарушений в генах семейства FGFR
##article.numberofdownloads## 324
##article.numberofviews## 521
pdf (Русский)

关键词

обзор
молекулярная диагностика
рецептор фактора роста фибробластов
таргетная терапия
FGFR-ингибитор

How to Cite

Митюшкина, Н., & Имянитов, Е. (2023). Молекулярная диагностика нарушений в генах семейства FGFR. VOPROSY ONKOLOGII, 69(3), 364–372. https://doi.org/10.37469/0507-3758-2023-69-3-364-372

摘要

Соматические активирующие изменения генов FGFR1-4 выявляются в 5-10% всех опухолей человека. Применение новых селективных FGFR-ингибиторов позволяет улучшить результаты лечения местно-распространённого и метастатического уротелиального рака и холангиокарциномы с активирующими изменениями в генах FGFR2 и FGFR3. В рамках клинических испытаний изучаются возможности применения препаратов из этого класса и при других типах новообразований. Для отбора пациентов на лечение таргетными ингибиторами FGFR-рецепторов обычно требуется проводить молекулярно-генетическое исследование опухолевой ткани. В настоящем обзоре рассмотрены различные аспекты, связанные с молекулярной диагностикой нарушений в генах семейства FGFR при метастатическом уротелиальном раке, холангиокарциноме и некоторых других типах опухолей.

https://doi.org/10.37469/0507-3758-2023-69-3-364-372
##article.numberofdownloads## 324
##article.numberofviews## 521
pdf (Русский)

参考

Helsten T, Schwaederle M, Kurzrock R. Fibroblast growth factor receptor signaling in hereditary and neoplastic disease: biologic and clinical implications. Cancer Metastasis Rev. 2015;34(3):479496. doi:10.1007/s10555-015-9579-8.

Xie Y, Su N, Yang J, et al. FGF/FGFR signaling in health and disease. Signal Transduct Target Ther. 2020;5(1):181. doi:10.1038/s41392-020-00222-7.

Amato LGL, Montenegro LR, Lerario AM, et al. New genetic findings in a large cohort of congenital hypogonadotropic hypogonadism. Eur J Endocrinol. 2019;181(2):103119. doi:10.1530/EJE-18-0764.

Helsten T, Elkin S, Arthur E, et al. The FGFR Landscape in Cancer: Analysis of 4,853 Tumors by Next-Generation Sequencing. Clin Cancer Res. 2016;22(1):259267. doi:10.1158/1078-0432.CCR-14-3212.

Gu W, Yang J, Wang Y, et al. Comprehensive identification of FGFR1-4 alterations in 5 557 Chinese patients with solid tumors by next-generation sequencing. Am J Cancer Res. 2021;11(8):38933906.

Krook MA, Reeser JW, Ernst G, et al. Fibroblast growth factor receptors in cancer: genetic alterations, diagnostics, therapeutic targets and mechanisms of resistance. Br J Cancer. 2021;124(5):880892. doi:10.1038/s41416-020-01157-0.

Facchinetti F, Hollebecque A, Bahleda R, et al. Facts and New Hopes on Selective FGFR Inhibitors in Solid Tumors. Clin Cancer Res. 2020;26(4):764774. doi:10.1158/1078-0432.CCR-19-2035.

Billerey C, Chopin D, Aubriot-Lorton MH, et al. Frequent FGFR3 mutations in papillary non-invasive bladder (pTa) tumors. Am J Pathol. 2001;158(6):19551959. doi:10.1016/S0002-9440(10)64665-2.

Pietzak EJ, Bagrodia A, Cha EK, et al. Next-generation Sequencing of Nonmuscle Invasive Bladder Cancer Reveals Potential Biomarkers and Rational Therapeutic Targets. Eur Urol. 2017;72(6):952959. doi:10.1016/j.eururo.2017.05.032.

Ross JS, Wang K, Khaira D, et al. Comprehensive genomic profiling of 295 cases of clinically advanced urothelial carcinoma of the urinary bladder reveals a high frequency of clinically relevant genomic alterations. Cancer. 2016;122(5):702711. doi:10.1002/cncr.29826.

Park CK, Cho NH. Differences in genomic profile of high-grade urothelial carcinoma according to tumor location. Urol Oncol. 2022;40(3):109.e1109.e9. doi:10.1016/j.urolonc.2021.08.019.

Sfakianos JP, Cha EK, Iyer G, et al. Genomic Characterization of Upper Tract Urothelial Carcinoma. Eur Urol. 2015;68(6):970977. doi:10.1016/j.eururo.2015.07.039.

Robertson AG, Kim J, Al-Ahmadie H, et al. Comprehensive Molecular Characterization of Muscle-Invasive Bladder Cancer. Cell. 2017;171(3):540556.e25. doi:10.1016/j.cell.2017.09.007.

Османов ЮИ, Гаибов ЖА, Коган ЕА и соавт. Морфологическая и иммуногистохимическая характеристика молекулярных подтипов уротелиальных карцином. Архив патологии. 2019;81(5):3544 [Osmanov YuI, Gaibov ZhA, Kogan EA, et al. Morphological and immunohistochemical characteristics of the molecular subtypes of urothelial carcinomas. Archive of Pathology (Arkhiv patologii). 2019;81(5):3544 (In Russ.)] doi:10.17116/patol20198105135.

Gallo LH, Nelson KN, Meyer AN, et al. Functions of Fibroblast Growth Factor Receptors in cancer defined by novel translocations and mutations. Cytokine Growth Factor Rev. 2015;26(4):425449. doi:10.1016/j.cytogfr.2015.03.003.

Roubal K, Myint ZW, Kolesar JM. Erdafitinib: A novel therapy for FGFR-mutated urothelial cancer. Am J Health Syst Pharm. 2020;77(5):346351. doi:10.1093/ajhp/zxz329.

Loriot Y, Necchi A, Park SH, et al. Erdafitinib in Locally Advanced or Metastatic Urothelial Carcinoma. N Engl J Med. 2019;381(4):338348. doi:10.1056/NEJMoa1817323.

Di Stefano AL, Fucci A, Frattini V, et al. Detection, Characterization, and Inhibition of FGFR-TACC Fusions in IDH Wild-type Glioma. Clin Cancer Res. 2015;21(14):33073317. doi:10.1158/1078-0432.CCR-14-2199.

Qin A, Johnson A, Ross JS, et al. Detection of Known and Novel FGFR Fusions in Non-Small Cell Lung Cancer by Comprehensive Genomic Profiling. J Thorac Oncol. 2019;14(1):5462. doi:10.1016/j.jtho.2018.09.014.

Abou-Alfa GK, Sahai V, Hollebecque A, et al. Pemigatinib for previously treated, locally advanced or metastatic cholangiocarcinoma: a multicentre, open-label, phase 2 study. Lancet Oncol. 2020;21(5):671684. doi:10.1016/S1470-2045(20)30109-1.

Javle M, Roychowdhury S, Kelley RK, et al. Infigratinib (BGJ398) in previously treated patients with advanced or metastatic cholangiocarcinoma with FGFR2 fusions or rearrangements: mature results from a multicentre, open-label, single-arm, phase 2 study. Lancet Gastroenterol Hepatol. 2021;6(10):803815. doi:10.1016/S2468-1253(21)00196-5.

Goyal L, Shi L, Liu LY, et al. TAS-120 Overcomes Resistance to ATP-Competitive FGFR Inhibitors in Patients with FGFR2 Fusion-Positive Intrahepatic Cholangiocarcinoma. Cancer Discov. 2019;9(8):10641079. doi:10.1158/2159-8290.CD-19-0182.

Cleary JM, Raghavan S, Wu Q et al. FGFR2 Extracellular Domain In-Frame Deletions Are Therapeutically Targetable Genomic Alterations That Function as Oncogenic Drivers in Cholangiocarcinoma. Cancer Discov. 2021;11(10):24882505. doi:10.1158/2159-8290.CD-20-1669.

Rengan AK, Denlinger CS. Robust Response to Futibatinib in a Patient With Metastatic FGFR-Addicted Cholangiocarcinoma Previously Treated Using Pemigatinib. J Natl Compr Canc Netw. 2022:16. doi:10.6004/jnccn.2021.7121.

Arai Y, Totoki Y, Hosoda F, et al. Fibroblast growth factor receptor 2 tyrosine kinase fusions define a unique molecular subtype of cholangiocarcinoma. Hepatology. 2014;59(4):14271434. doi:10.1002/hep.26890.

Jusakul A, Cutcutache I, Yong CH, et al. Whole-Genome and Epigenomic Landscapes of Etiologically Distinct Subtypes of Cholangiocarcinoma. Cancer Discov. 2017;7(10):11161135. doi:10.1158/2159-8290.CD-17-0368.

Kongpetch S, Jusakul A, Lim JQ, et al. Lack of Targetable FGFR2 Fusions in Endemic Fluke-Associated Cholangiocarcinoma. JCO Glob Oncol. 2020;6:628638. doi:10.1200/GO.20.00030.

Zhu Z, Dong H, Wu J et al. Targeted genomic profiling revealed a unique clinical phenotype in intrahepatic cholangiocarcinoma with fibroblast growth factor receptor rearrangement. Transl Oncol. 2021;14(10):101168. doi:10.1016/j.tranon.2021.101168.

Takeda M, Takahama T, Sakai K et al. Clinical Application of the FoundationOne CDx Assay to Therapeutic Decision-Making for Patients with Advanced Solid Tumors. Oncologist. 2021;26(4):e588e596. doi:10.1002/onco.13639.

Javle MM, Murugesan K, Shroff RT, et al. Profiling of 3,634 cholangiocarcinomas (CCA) to identify genomic alterations (GA), tumor mutational burden (TMB), and genomic loss of heterozygosity (gLOH). Journal of Clinical Oncology. 2019;37(15_suppl):4087.

Bruno R, Fontanini G. Next Generation Sequencing for Gene Fusion Analysis in Lung Cancer: A Literature Review. Diagnostics (Basel). 2020;10(8):521. doi:10.3390/diagnostics10080521.

Heydt C, Wölwer CB, Velazquez Camacho O, et al. Detection of gene fusions using targeted next-generation sequencing: a comparative evaluation. BMC Med Genomics. 2021;14(1):62. doi:10.1186/s12920-021-00909-y.

Zingg D, Bhin J, Yemelyanenko J, et al. Truncated FGFR2 is a clinically actionable oncogene in multiple cancers. Nature. 2022;608(7923):609617. doi:10.1038/s41586-022-05066-5.

Bitzer M, Spahn S, Babaei S, et al. Targeting extracellular and juxtamembrane FGFR2 mutations in chemotherapy-refractory cholangiocarcinoma. NPJ Precis Oncol. 2021;5(1):80. doi:10.1038/s41698-021-00220-0.

Goyal L, Saha SK, Liu LY, et al. Polyclonal Secondary FGFR2 Mutations Drive Acquired Resistance to FGFR Inhibition in Patients with FGFR2 Fusion-Positive Cholangiocarcinoma. Cancer Discov. 2017;7(3):252263. doi:10.1158/2159-8290.CD-16-1000.

Weiss J, Sos ML, Seidel D, et al. Frequent and focal FGFR1 amplification associates with therapeutically tractable FGFR1 dependency in squamous cell lung cancer. Sci Transl Med. 2010;2(62):62ra93. doi:10.1126/scitranslmed.3001451.

Bogatyrova O, Mattsson JSM, Ross EM, et al. FGFR1 overexpression in non-small cell lung cancer is mediated by genetic and epigenetic mechanisms and is a determinant of FGFR1 inhibitor response. Eur J Cancer. 2021;151:136149. doi:10.1016/j.ejca.2021.04.005.

Zhou Z, Liu Z, Ou Q, et al. Targeting FGFR in non-small cell lung cancer: implications from the landscape of clinically actionable aberrations of FGFR kinases. Cancer Biol Med. 2021;18(2):490–501. doi:10.20892/j.issn.2095-3941.2020.0120.

Wang R, Wang L, Li Y, et al. FGFR1/3 tyrosine kinase fusions define a unique molecular subtype of non-small cell lung cancer. Clin Cancer Res. 2014;20(15):41074114. doi:10.1158/1078-0432.CCR-14-0284.

Moes-Sosnowska J, Skupinska M, Lechowicz U, et al. FGFR1-4 RNA-Based Gene Alteration and Expression Analysis in Squamous Non-Small Cell Lung Cancer. Int J Mol Sci. 2022;23(18):10506. doi:10.3390/ijms231810506.

Capelletti M, Dodge ME, Ercan D, et al. Identification of recurrent FGFR3-TACC3 fusion oncogenes from lung adenocarcinoma. Clin Cancer Res. 2014;20(24):65516558. doi:10.1158/1078-0432.CCR-14-1337.

Raphael A, Dudnik E, Hershkovitz D, et al. FGFR fusions as an acquired resistance mechanism following treatment with epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs) and a suggested novel target in advanced non-small cell lung cancer (aNSCLC). J Clin Med. 2022;11(9):2475. doi:10.3390/jcm11092475.

Nogova L, Sequist LV, Perez Garcia JM, et al. Evaluation of BGJ398, a fibroblast growth factor receptor 1-3 kinase inhibitor, in patients with advanced solid tumors harboring genetic alterations in fibroblast growth factor receptors: results of a global phase i, dose-escalation and dose-expansion study. J Clin Oncol. 2017;35(2):157165. doi:10.1200/JCO.2016.67.2048.

Aggarwal C, Redman MW, Lara PN Jr, et al. SWOG S1400D (NCT02965378), a phase ii study of the fibroblast growth factor receptor inhibitor AZD4547 in previously treated patients with fibroblast growth factor pathway-activated stage iv squamous cell lung cancer (Lung-MAP Substudy). J Thorac Oncol. 2019;14(10):18471852. doi:10.1016/j.jtho.2019.05.041.

Schuler M, Cho BC, Sayehli CM, et al. Rogaratinib in patients with advanced cancers selected by FGFR mRNA expression: a phase 1 dose-escalation and dose-expansion study. Lancet Oncol. 2019;20(10):14541466. doi:10.1016/S1470-2045(19)30412-7.

Kotani H, Ebi H, Kitai H, et al. Co-active receptor tyrosine kinases mitigate the effect of FGFR inhibitors in FGFR1-amplified lung cancers with low FGFR1 protein expression. Oncogene. 2016;35(27):35873597. doi:10.1038/onc.2015.426.

Erber R, Rübner M, Davenport S, et al. Impact of fibroblast growth factor receptor 1 (FGFR1) amplification on the prognosis of breast cancer patients. Breast Cancer Res Treat. 2020;184(2):311324. doi:10.1007/s10549-020-05865-2.

Mouron S, Manso L, Caleiras E, et al. FGFR1 amplification or overexpression and hormonal resistance in luminal breast cancer: rationale for a triple blockade of ER, CDK4/6, and FGFR1. Breast Cancer Res. 2021;23(1):21. doi:10.1186/s13058-021-01398-8.

Shi YJ, Tsang JY, Ni YB, et al. FGFR1 is an adverse outcome indicator for luminal A breast cancers. Oncotarget. 2016;7(4):50635073. doi:10.18632/oncotarget.6563.

Aleksakhina SN, Kramchaninov MM, Mikushina AD, et al. CCND1 and FGFR1 gene amplifications are associated with reduced benefit from aromatase inhibitors in metastatic breast cancer. Clin Transl Oncol. 2021;23(4):874881. doi:10.1007/s12094-020-02481-w.

Formisano L, Lu Y, Servetto A, et al. Aberrant FGFR signaling mediates resistance to CDK4/6 inhibitors in ER+ breast cancer. Nat Commun. 2019;10(1):1373. doi:10.1038/s41467-019-09068-2.

Mao P, Cohen O, Kowalski KJ, et al. Acquired FGFR and FGF Alterations Confer Resistance to Estrogen Receptor (ER) Targeted Therapy in ER+ Metastatic Breast Cancer. Clin Cancer Res. 2020;26(22):59745989. doi:10.1158/1078-0432.CCR-19-3958.

Coombes RC, Badman PD, Lozano-Kuehne JP, et al. Results of the phase IIa RADICAL trial of the FGFR inhibitor AZD4547 in endocrine resistant breast cancer. Nat Commun. 2022;13(1):3246. doi:10.1038/s41467-022-30666-0.

Ooki A, Yamaguchi K. The beginning of the era of precision medicine for gastric cancer with fibroblast growth factor receptor 2 aberration. Gastric Cancer. 2021;24(6):11691183. doi:10.1007/s10120-021-01235-z.

Pearson A, Smyth E, Babina IS, et al. High-level clonal FGFR amplification and response to FGFR inhibition in a translational clinical trial. Cancer Discov. 2016;6(8):838851. doi:10.1158/2159-8290.CD-15-1246.

Wainberg ZA, Enzinger PC, Kang YK, et al. Bemarituzumab in patients with FGFR2b-selected gastric or gastro-oesophageal junction adenocarcinoma (FIGHT): a randomised, double-blind, placebo-controlled, phase 2 study. Lancet Oncol. 2022;23(11):14301440. doi:10.1016/S1470-2045(22)00603-9.

Lassman AB, Sepúlveda-Sánchez JM, Cloughesy TF, et al. Infigratinib in patients with recurrent gliomas and FGFR alterations: a multicenter phase II study. Clin Cancer Res. 2022;28(11):22702277. doi:10.1158/1078-0432.CCR-21-2664.

Meric-Bernstam F, Bahleda R, Hierro C, et al. Futibatinib, an Irreversible FGFR1-4 Inhibitor, in Patients with Advanced Solid Tumors Harboring FGF/FGFR Aberrations: A Phase I Dose-Expansion Study. Cancer Discov. 2022;12(2):402415. doi:10.1158/2159-8290.CD-21-0697.

Subbiah V, Iannotti NO, Gutierrez M, et al. FIGHT-101, a first-in-human study of potent and selective FGFR 1-3 inhibitor pemigatinib in pan-cancer patients with FGF/FGFR alterations and advanced malignancies. Ann Oncol. 2022;33(5):522533. doi:10.1016/j.annonc.2022.02.001.

Patani H, Bunney TD, Thiyagarajan N, et al. Landscape of activating cancer mutations in FGFR kinases and their differential responses to inhibitors in clinical use. Oncotarget. 2016;7(17):2425224268. doi:10.18632/oncotarget.8132.

Nakamura IT, Kohsaka S, Ikegami M, et al. Comprehensive functional evaluation of variants of fibroblast growth factor receptor genes in cancer. NPJ Precis Oncol. 2021;5(1):66. doi:10.1038/s41698-021-00204-0.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

© АННМО «Вопросы онкологии», Copyright (c) 2023