Abstract
Liquid biopsy has emerged as a novel and highly promising method for the non-invasive analysis of tumor-specific genetic alterations. In clinical practice, the most widely adopted application involves screening circulating tumor DNA (ctDNA) for mutations associated with resistance to targeted therapy. For lung adenocarcinoma patients, a positive ctDNA test result often warrants a change in therapeutic agent. Liquid biopsy is being explored for other critical applications, including early cancer detection and disease monitoring. However, these efforts face significant technical challenges. A key limitation is that many tumors, particularly in early stages, release insufficient amounts of DNA into the bloodstream for reliable molecular analysis. Circulating tumor RNA (ctRNA) represents a less conventional but theoretically compelling alternative. This suggests that RNA-based diagnostics could address the central limitation of ctDNA analysis: the scarcity of tumor-derived DNA in sampled blood. Unlike nuclear DNA, RNA transcripts are continuously produced by tumor cells in high copy numbers, potentially offering greater abundance in biological fluids. Non-invasive RNA diagnostics may replicate the capabilities of DNA-based liquid biopsy. For instance, RNA markers enable direct or indirect evaluation of therapeutic targets status for targeted therapy. In certain scenarios, such as detecting chimeric gene transcripts from clinically significant translocations, ctRNA analysis clearly outperforms ctDNA-based methods. The tumor transcriptome encompasses a large number of functional and structural categories, different in their chemical stability, representation in blood and across biological fluids, including mRNA, microRNA, long non-coding RNA, and circular RNA. Tumor-derived RNA circulates in plasma incorporated into nucleoprotein complexes, extracellular vesicles, platelets, or circulating tumor cells. This biological diversity has led to a proliferation of RNA-based liquid biopsy approaches, complicating standardization and clinical implementation. To date, only a limited number of pioneering studies have undergone independent clinical validation. This review characterizes the current landscape of RNA-based liquid biopsy in lung cancer.
References
Bettegowda C., Sausen M., Leary R.J., et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med. 2014; 6: 224ra224.-DOI: 10.1126/scitranslmed.300709410.1126/scitranslmed.3007094.
Kuligina E.S., Meerovich R., Zagorodnev K.A., et al. Content of circulating tumor DNA depends on the tumor type and the dynamics of tumor size, but is not influenced significantly by physical exercise, time of the day or recent meal. Cancer Genet. 2021; 256-257: 165-178.-DOI: 10.1016/j.cancergen.2021.05.014.
Kuligina E., Moiseyenko F., Belukhin S., et al. Tumor irradiation may facilitate the detection of tumor-specific mutations in plasma. World J Clin Oncol. 2021; 12(12): 1215-1226.-DOI: 10.5306/wjco.v12.i12.1215.
Downs B.M., Hoang T.M., Cope L. Increasing the capture rate of circulating tumor DNA in unaltered plasma using passive microfluidic mixer flow cells. Langmuir. 2023; 39(9): 3225-3234.-DOI: 10.1021/acs.langmuir.2c02919.
Tong F., Tang G., Wang X. Characteristics of human and microbiome RNA profiles in saliva. RNA Biol. 2023; 20(1): 398-408.-DOI: 10.1080/15476286.2023.2229596.
Tsakonas G., Tadigotla V., Chakrabortty S.K., et al. Cerebrospinal fluid as a liquid biopsy for molecular characterization of brain metastasis in patients with non-small cell lung cancer. Lung Cancer. 2023; 182: 107292.-DOI: 10.1016/j.lungcan.2023.107292.
Zhao X., Zhong Y., Wang X., et al. Advances in circular RNA and its applications. Int J Med Sci. 2022; 19(6): 975-985.-DOI: 10.7150/ijms.71840.
Kopreski M.S., Benko F.A., Kwak L.W., Gocke C.D. Detection of tumor messenger RNA in the serum of patients with malignant melanoma. Clin Cancer Res. 1999; 5(8): 1961-5.
Wang C., Liu H. Factors influencing degradation kinetics of mRNAs and half-lives of microRNAs, circRNAs, lncRNAs in blood in vitro using quantitative PCR. Sci Rep. 2022; 12(1): 7259.-DOI: 10.1038/s41598-022-11339-w.
Sharova L.V., Sharov A.A., Nedorezov T., et al. Database for mRNA half-life of 19 977 genes obtained by DNA microarray analysis of pluripotent and differentiating mouse embryonic stem cells. DNA Res. 2009; 16(1): 45-58.-DOI: 10.1093/dnares/dsn030.
Vorperian S.K., Moufarrej M.N., Tabula Sapiens Consortium, Quake S.R. Cell types of origin of the cell-free transcriptome. Nat Biotechnol. 2022; 40(6): 855-861.-DOI: 10.1038/s41587-021-01188-910.1038/s41587-021-01188-9.
Larson M.H., Pan W., Kim H.J., et al. A comprehensive characterization of the cell-free transcriptome reveals tissue- and subtype-specific biomarkers for cancer detection. Nat Commun. 2021; 12(1): 2357.-DOI: 10.1038/s41467-021-22444-1.
Chen S., Jin Y., Wang S., et al. Cancer type classification using plasma cell-free RNAs derived from human and microbes. Elife. 2022; 11: e75181.-DOI: 10.7554/eLife.75181.
Albrecht L.J., Höwner A., Griewank K., et al. Circulating cell-free messenger RNA enables non-invasive pan-tumour monitoring of melanoma therapy independent of the mutational genotype. Clin Transl Med. 2022; 12(11): e1090.-DOI: 10.1002/ctm2.1090.
Reggiardo R.E., Maroli S.V., Peddu V., et al. Profiling of repetitive RNA sequences in the blood plasma of patients with cancer. Nat Biomed Eng. 2023; 7(12): 1627-35.-DOI: 10.1038/s41551-023-01081-7.
Khojah R., Reggiardo R.E., Ozen M., et al. Extracellular RNA signatures of mutant KRAS(G12C) lung adenocarcinoma cells. bioRxiv. 2022.-DOI: 10.1101/2022.02.23.481574.
Raez L.E., Danenberg K., Sumarriva D., et al. Using cfRNA as a tool to evaluate clinical treatment outcomes in patients with metastatic lung cancers and other tumors. Cancer Drug Resist. 2021; 4(4): 1061-1071.-DOI: 10.20517/cdr.2021.78.
Heeke S., Benzaquen J., Vallee A., et al. Detection of ALK fusion transcripts in plasma of non-small cell lung cancer patients using a novel RT-PCR based assay. Ann Transl Med. 2021; 9(11): 922.-DOI: 10.21037/atm-20-7900.
Hasegawa N., Kohsaka S., Kurokawa K., et al. Highly sensitive fusion detection using plasma cell-free RNA in non-small-cell lung cancers. Cancer Sci. 2021; 112(10): 4393-4403.-DOI: 10.1111/cas.15084.
Dragomir M.P., Knutsen E., Calin G.A. Classical and noncanonical functions of miRNAs in cancers. Trends Genet. 2022; 38(4): 379-394.-DOI: 10.1016/j.tig.2021.10.002.
Huang H.Y., Lin Y.C., Cui S., et al. miRTarBase update 2022: an informative resource for experimentally validated miRNA-target interactions. Nucleic Acids Res. 2022; 50(D1): D222-D230.-DOI: 10.1093/nar/gkab1079.
Wang C., Ding M., Xia M., et al. A five-miRNA panel identified from a multicentric case-control study serves as a novel diagnostic tool for ethnically diverse non-small-cell lung cancer patients. EBioMedicine. 2015; 2(10): 1377-85.-DOI: 10.1016/j.ebiom.2015.07.034.
Iacona J.R., Lutz C.S. miR-146a-5p: Expression, regulation, and functions in cancer. Wiley Interdiscip Rev RNA. 2019; 10(4): e1533.-DOI: 10.1002/wrna.1533.
Dama E., Colangelo T., Fina E., et al. Biomarkers and lung cancer early detection: State of the art. Cancers (Basel). 2021; 13(15): 3919.-DOI: 10.3390/cancers13153919.
Sozzi G., Boeri M., Rossi M., et al. Clinical utility of a plasma-based miRNA signature classifier within computed tomography lung cancer screening: a correlative MILD trial study. J Clin Oncol. 2014; 32(8): 768-73.-DOI: 10.1200/JCO.2013.50.4357.
Wozniak M.B., Scelo G., Muller D.C., et al. Circulating MicroRNAs as non-invasive biomarkers for early detection of non-small-cell lung cancer. PLoS One. 2015; 10(5): e0125026.-DOI: 10.1371/journal.pone.0125026.
Ying L., Du L., Zou R., et al. Development of a serum miRNA panel for detection of early stage non-small cell lung cancer. Proc Natl Acad Sci USA. 2020; 117(40): 25036-25042.-DOI: 10.1073/pnas.2006212117.
Chen C., Wang J., Lu D., et al. Early detection of lung cancer via biointerference-free, target microRNA-triggered core-satellite nanocomposites. Nanoscale. 2022; 14(22): 8103-8111.-DOI: 10.1039/d1nr07670a.
Fehlmann T., Kahraman M., Ludwig N., et al. Evaluating the use of circulating microRNA profiles for lung cancer detection in symptomatic patients. JAMA Oncol. 2020; 6(5): 714-723.-DOI: 10.1001/jamaoncol.2020.0001.
Asakura K., Kadota T., Matsuzaki J, et al. A miRNA-based diagnostic model predicts resectable lung cancer in humans with high accuracy. Commun Biol. 2020; 3(1): 134.-DOI: 10.1038/s42003-020-0863-y.
Matsuzaki J., Kato K., Oono K., et al. Prediction of tissue-of-origin of early stage cancers using serum miRNomes. JNCI Cancer Spectr. 2023; 7(1): pkac080.-DOI: 10.1093/jncics/pkac080.
Yi M., Liao Z., Deng L., et al. High diagnostic value of miRNAs for NSCLC: quantitative analysis for both single and combined miRNAs in lung cancer. Ann Med. 2021; 53(1): 2178-2193.-DOI: 10.1080/07853890.2021.2000634.
Mattick J.S., Amaral P.P., Carninci P., et al. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat Rev Mol Cell Biol. 2023; 24(6): 430-447.-DOI: 10.1038/s41580-022-00566-8.
Choi S.S., Kim S.E., Oh S.Y., Ahn Y.H. Clinical implications of circulating circular RNAs in lung cancer. biomedicines. 2022; 10(4): 871.-DOI: 10.3390/biomedicines10040871.
Zhao S., Li S., Liu W., et al. Circular RNA signature in lung adenocarcinoma: A MiOncoCirc database-based study and literature review. Front Oncol. 2020; 10: 523342.-DOI: 10.3389/fonc.2020.523342.
Luo Y.H., Yang Y.P., Chien C.S., et al. Circular RNA hsa_circ_0000190 facilitates the tumorigenesis and immune evasion by upregulating the expression of soluble PD-L1 in non-small-cell lung cancer. Int J Mol Sci. 2021; 23(1): 64.-DOI: 10.3390/ijms23010064.
Ishola A.A., Chien C.S., Yang Y.P., et al. Oncogenic circRNA C190 promotes non-small cell lung cancer via modulation of the EGFR/ERK pathway. Cancer Res. 2022; 82(1): 75-89.-DOI: 10.1158/0008-5472.CAN-21-1473.
Luo Y., Zhang Q., Lv B., et al. CircFOXP1: A novel serum diagnostic biomarker for non-small cell lung cancer. Int J Biol Markers. 2022; 37(1): 58-65.-DOI: 10.1177/17246008211073151.
Liu X.X., Yang Y.E., Liu X., et al. A two-circular RNA signature as a noninvasive diagnostic biomarker for lung adenocarcinoma. J Transl Med. 2019; 17(1): 50.-DOI: 10.1186/s12967-019-1800-z.
Tan S., Gou Q., Pu W., et al. Circular RNA F-circEA produced from EML4-ALK fusion gene as a novel liquid biopsy biomarker for non-small cell lung cancer. Cell Res. 2018; 28(6): 693-695.-DOI: 10.1038/s41422-018-0033-7.
Bersani F., Picca F., Morena D., et al. Swarm intelligence-enhanced detection of non-small-cell lung cancer using tumor-educated platelets. Cancer Cell. 2017; 32(2): 238-252.e9.-DOI: 10.1016/j.ccell.2017.07.004.
Liu Y.T., Han X.H., Xing P.Y., et al. Circular RNA profiling identified as a biomarker for predicting the efficacy of Gefitinib therapy for non-small cell lung cancer. J Thorac Dis. 2019; 11(5): 1779-1787.-DOI: 10.21037/jtd.2019.05.22.
Vardarlı A., Ozgur S., Goksel T., et al. Conversion of specific lncRNAs to biomarkers in exhaled breath condensate samples of patients with advanced stage non-small-cell lung cancer. Front Genet. 2023; 14: 1200262.-DOI: 10.3389/fgene.2023.1200262.
Gurung S., Perocheau D., Touramanidou L., Baruteau J. The exosome journey: from biogenesis to uptake and intracellular signalling. Cell Commun Signal. 2021; 19(1): 47.-DOI: 10.1186/s12964-021-00730-1.
Jeppesen D.K., Fenix A.M., Franklin J.L., et al. Reassessment of Exosome Composition. Cell. 2019; 177(2): 428-445.e18.-DOI: 10.1016/j.cell.2019.02.029.
Wang X., Xia J., Yang L., et al. Recent progress in exosome research: isolation, characterization and clinical applications. Cancer Gene Ther. 2023; 30(8): 1051-1065.-DOI: 10.1038/s41417-023-00617-y.
Wei S.L., Ye J.J., Sun L., et al. Exosome-derived circKIF20B suppresses gefitinib resistance and cell proliferation in non-small cell lung cancer. Cancer Cell Int. 2023; 23(1): 129.-DOI: 10.1186/s12935-023-02974-y.
Sánchez-Herrero E., Campos-Silva C., Cáceres-Martell Y., et al. ALK-fusion transcripts can be detected in extracellular vesicles (EVs) from nonsmall cell lung cancer cell lines and patient plasma: toward EV-based noninvasive testing. Clin Chem. 2022; 68(5): 668-679.-DOI: 10.1093/clinchem/hvac021.
Purcell E., Owen S., Prantzalos E., et al. Epidermal growth factor receptor mutations carried in extracellular vesicle-derived cargo mirror disease status in metastatic non-small cell lung cancer. Front Cell Dev Biol. 2021; 9: 724389.-DOI: 10.3389/fcell.2021.724389.
Castellanos-Rizaldos E., Grimm D.G., Tadigotla V., et al. Exosome-based detection of EGFR T790M in plasma from non-small cell lung cancer patients. Clin Cancer Res. 2018; 24(12): 2944-2950.-DOI: 10.1158/1078-0432.CCR-17-3369.
Min L., Zhu T., Lv B., et al. Exosomal LncRNA RP5-977B1 as a novel minimally invasive biomarker for diagnosis and prognosis in non-small cell lung cancer. Int J Clin Oncol. 2022; 27(6): 1013-1024.-DOI: 10.1007/s10147-022-02129-5.
Ma J., Qi G., Li L. A novel serum exosomes-based biomarker hsa_circ_0002130 facilitates osimertinib-resistance in non-small cell lung cancer by sponging miR-498. Onco Targets Ther. 2020; 13: 5293-5307.-DOI: 10.2147/OTT.S243214.
Han B., Marrades R.M., Viñolas N., et al. Monitoring HOTTIP levels on extracellular vesicles for predicting recurrence in surgical non-small cell lung cancer patients. Transl Oncol. 2021; 14(8): 101144.-DOI: 10.1016/j.tranon.2021.101144.
He X., Park S., Chen Y., Lee H. Extracellular vesicle-associated miRNAs as a biomarker for lung cancer in liquid biopsy. Front Mol Biosci. 2021; 8: 630718.-DOI: 10.3389/fmolb.2021.630718.
Chen T.F., Jiang G.L., Fu X.L., et al. CK19 mRNA expression measured by reverse-transcription polymerase chain reaction (RT-PCR) in the peripheral blood of patients with non-small cell lung cancer treated by chemo-radiation: an independent prognostic factor. Lung Cancer. 2007; 56(1): 105-14.-DOI: 10.1016/j.lungcan.2006.11.006.
Jin F., Zhu L., Shao J., et al. Circulating tumour cells in patients with lung cancer universally indicate poor prognosis. Eur Respir Rev. 2022; 31(166): 220151.-DOI: 10.1183/16000617.0151-2022.
Nilsson R.J., Karachaliou N., Berenguer J., et al. Rearranged EML4-ALK fusion transcripts sequester in circulating blood platelets and enable blood-based crizotinib response monitoring in non-small-cell lung cancer. Oncotarget. 2016; 7(1): 1066-75.-DOI: 10.18632/oncotarget.6279.
Dong X., Song X., Ding S., et al. Tumor-educated platelet SNORD55 as a potential biomarker for the early diagnosis of non-small cell lung cancer. Thorac Cancer. 2021; 12(5): 659-666.-DOI: 10.1111/1759-7714.13823.
Goswami C., Chawla S., Thakral D., et al. Molecular signature comprising 11 platelet-genes enables accurate blood-based diagnosis of NSCLC. BMC Genomics. 2020; 21(1): 744.-DOI: 10.1186/s12864-020-07147-z.
Best M.G., Sol N., Kooi I., et al. RNA-Seq of tumor-educated platelets enables blood-based pan-cancer, multiclass, and molecular pathway cancer diagnostics. Cancer Cell. 2015; 28(5): 666-676.-DOI: 10.1016/j.ccell.2015.09.018.
Antunes-Ferreira M., D'Ambrosi S., Arkani M., et al. Tumor-educated platelet blood tests for non-small cell lung cancer detection and management. Sci Rep. 2023; 13(1): 9359.-DOI: 10.1038/s41598-023-35818-w.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
© АННМО «Вопросы онкологии», Copyright (c) 2025