摘要
Иммунный синапс (ИС) - высокоспециализированное соединение между Т-лимфоцитом и антигенпрезентирующей клеткой (АПК), состоящее из центрального кластера рецепторов Т-клеток, окруженное кольцом молекул адгезии. В настоящее время показано, что образование иммунных синапсов является активным и динамичным механизмом, который позволяет Т-клеткам различать потенциальные антигенные лиганды. На первом этапе формирования иммунного синапса лиганды рецепторов Т-клеток задействованы во внешнем кольце формирующегося синапса. Перемещение этих комплексов в центральный кластер зависит от кинетики взаимодействия молекул Т-клеточный рецептор-лиганд. Таким образом, формирование стабильного центрального кластера в иммунном синапсе является определяющим событием для активации и пролиферации Т-лимфоцитов. Использование эффективных способов воздействия на ИС и внедрение в практику новых противоопухолевых препаратов, модуляторов иммунного синапса позволяет по-новому взглянуть на возможности иммунотерапии опухолей.
参考
Chaplin DD. Overview of the immune response // J. Allergy Clin. Immunol. 2010;125(2 Suppl. 2):3–23. https: // doi: 10.1016/j.jaci.2009.12.980
Guermonprez P, Valladeau J, Zitvogel L, Théry C, Amigorena S. Antigen presentation and T cell stimulation by dendritic cells // Annu Rev. Immunol. 2002;20:621-667. https: // doi: 10.1146/annurev.immunol.20.100301.064828
Ярилин А.А. Иммунология. М.: ГЭОТАР-Медиа, 2010. ISBN 978-5-9704-1319-7
Angus KL, Griffiths GM. Cell polarisation and the immunological synapse // Curr. Opin. Cell Biol. 2013;25(1):85–91. https: // doi: 10.1016/j.ceb.2012.08.013
Garcia E, Ismail S. Spatiotemporal Regulation of Signaling: Focus on T Cell Activation and the Immunological Synapse // Int. J. Mol. Sci. 2020;21(9):3283. https: // doi: 10.3390/ijms21093283
Thauland TJ, Parker DC. Diversity in immunological synapse structure // Immunology. 2010;131:466–472.
Xie J, Tato CM, Davis MM. How the immune system talks to itself: the varied role of synapses // Immunol. Rev. 2013;251(1):65–79. https: // doi: 10.1111/imr.12017
Verboogen DR, Dingjan I, Revelo NH et al. The dendritic cell side of the immunological synapse // Biomol. Concepts. 2016;7(1):17–28. https: // doi: 10.1515/bmc-2015-0028
Azar GA, Lemaître F, Robey EA et al. Subcellular dynamics of T cell immunological synapses and kinapses in lymph nodes // PNAS. 2010;107(8):3675–3680. https: // doi: 10.1073/pnas.0905901107
Gérard A, Beemiller P, Friedman RS et al. Evolving immune circuits are generated by flexible, motile, and sequential immunological synapses // Immunol. Rev. 2013;251(1):80–96. https: // doi: 10.1111/imr.12021
Mempel TR, Henrickson SE, Von Andrian UH. T-cell priming by dendritic cells in lymph nodes occurs in three distinct phases // Nature. 2004;427(6970):154–159. https: // doi: 10.1038/nature02238
Markey KA, Gartlan KH, Kuns R.D et al. Imaging the immunological synapse between dendritic cells and T cells // J. Immunol. Methods. 2015;423:40–44. https: // doi: 10.1016/j.jim.2015.04.029
Tai Y, Wang Q, Korner H et al. Molecular Mechanisms of T Cells Activation by Dendritic Cells in Autoimmune Diseases // Front Pharmacol. 2018;9:642. https: // doi: 10.3389/fphar.2018.00642
Kaizuka Y. Regulations of T Cell Activation by Membrane and Cytoskeleton // Membranes (Basel). 2020;10(12):443. https: // doi: 10.3390/membranes10120443
Lee M, Lee YH, Song J et al. Deep-learning-based three-dimensional label-free tracking and analysis of immunological synapses of CAR-T cells // Elife. 2020;9:e49023. https: // doi: 10.7554/eLife.49023
Jo JH, Kwon MS, Choi HO et al. Recycling and LFA-1-dependent trafficking of ICAM-1 to the immunological synapse // J. Cell. Biochem. 2010;111(5):1125–1137. https: // doi: 10.1002/jcb.22798
Fuente H, Mittelbrunn M, Sánchez-Martín L et al. Synaptic clusters of MHC class II molecules induced on DCs by adhesion molecule-mediated initial T-cell scanning // Mol. Biol. Cell. 2005;16(7):3314–3322. https: // doi: 10.1091/mbc.e05-01-0005
Mastrogiovanni M, Juzans M, Alcover A, Di Bartolo V. Coordinating Cytoskeleton and Molecular Traffic in T Cell Migration, Activation, and Effector Functions // Front. Cell. Dev. Biol. 2020;8:1138. https: // doi: 10.3389/fcell.2020.591348
Muntjewerff EM, Meesters LD, van den Bogaart G, Revelo NH. Reverse Signaling by MHC-I Molecules in Immune and Non-Immune Cell Types // Front. Immunol. 2020;11:3264. https: // doi: 10.3389/fimmu.2020.605958
Yokosuka T, Sakata-Sogawa K, Kobayashi W et al. Newly generated T cell receptor microclusters initiate and sustain T cell activation by recruitment of Zap70 and SLP-76 // Nat. Immunol. 2005;6(12):1253–1262. https: // doi: 10.1038/ni1272
Orbach R, Su X. Surfing on Membrane Waves: Microvilli, Curved Membranes, and Immune Signaling // Front. Immunol. 2020;11:2187. https: // doi: 10.3389/fimmu.2020.02187
Saito T, Yokosuka T, Hashimoto-Tane A. Dynamic regulation of T cell activation and co-stimulation through TCR-microclusters // FEBS Lett. 2010;584(24):4865–4871. https: // doi: 10.1016/j.febslet.2010.11.036
Ritter AT, Angus KL, Griffiths GM. The role of the cytoskeleton at the immunological synapse // Immunol. Rev. 2013;256(1):107-117. https: // doi: 10.1111/imr.12117
Fritzsche M, Fernandes RA, Chang VT et al. Cytoskeletal actin dynamics shape a ramifying actin network underpinning immunological synapse formation // Sci. Adv. 2017;3(6):e1603032. https: // doi: 10.1126/sciadv.1603032
Dustin ML. Supported bilayers at the vanguard of immune cell activation studies // J. Struct. Biol. 2009;168(1):152–160. https: // doi: 10.1016/j.jsb.2009.05.007
Rossy J, Pageon SV, Davis DM, Gaus K. Super-resolution microscopy of the immunological synapse // Curr. Opin. Immunol. 2013;25(3):307–312. https: // doi: 10.1016/j.coi.2013.04.002
Miller MJ, Safrina O, Parker I, Cahalan MD. Imaging the single cell dynamics of CD4+ T cell activation by dendritic cells in lymph nodes // J. Exp. Med. 2004;200(7):847–856. https: // doi: 10.1084/jem.20041236
Koh WH, Zayats R, Lopez P, Murooka TT. Visualizing Cellular Dynamics and Protein Localization in 3D Collagen // STAR Protoc. 2020;1(3):100203. https: // doi: 10.1016/j.xpro.2020.100203
Miller MJ, Hejazi AS, Wei SH et al. T cell repertoire scanning is promoted by dynamic dendritic cell behavior and random T cell motility in the lymph node // PNAS. 2004;101(4):998–1003. https: // doi: 10.1073/pnas.0306407101
Shakhar G, Lindquist RL, Skokos D et al. Stable T cell-dendritic cell interactions precede the development of both tolerance and immunity in vivo // Nat. Immunol. 2005;6(7):707–714. https: // doi: 10.1038/ni1210
Lühr JJ, Alex N, Amon L et al. Maturation of Monocyte-Derived DCs Leads to Increased Cellular Stiffness, Higher Membrane Fluidity, and Changed Lipid Composition // Front. Immunol. 2020;11:590121. https: // doi: 10.3389/fimmu.2020.590121
Henrickson SE, Perro M, Loughhead SM et al. Antigen availability determines CD8⁺ T cell-dendritic cell interaction kinetics and memory fate decisions // Immunity. 2013;39(3):496–507. https: // doi: 10.1016/j.immuni.2013.08.034
Beltman JB, Henrickson SE, von Andrian UH et al. Towards estimating the true duration of dendritic cell interactions with T cells // J. Immunol. Methods. 2009;347(1–2):54–69. https: // doi: 10.1016/j.jim.2009.05.013
Katzman SD, O'Gorman WE, Villarino AV et al. Duration of antigen receptor signaling determines T-cell tolerance or activation // PNAS. 2010;107(42):18085–18090. https: // doi: 10.1073/pnas.1010560107
Benson RA, MacLeod MK, Hale BG et al. Antigen presentation kinetics control T cell/dendritic cell interactions and follicular helper T cell generation in vivo // Elife. 2015;4:e06994. https: // doi: 10.7554/eLife.06994
Mahoney KM, Freeman GJ, McDermott DF. The Next Immune-Checkpoint Inhibitors: PD-1/PD-L1 Blockade in Melanoma // Clin. Ther. 2015;37(4):764–82. https: // doi: 10.1016/j.clinthera.2015.02.018
Niezgoda A, Niezgoda P, Czajkowski R. Novel Approaches to Treatment of Advanced Melanoma: A Review on Targeted Therapy and Immunotherapy // BioMed. Res. Int. 2015;2015. Article ID 851387. https: // doi: org/10.1155/2015/851387
Borghaei H, Paz-Ares L, Horn L et al. Nivolumab versus Docetaxel in Advanced Nonsquamous Non-Small-Cell Lung Cancer // N. Engl. J. Med. 2015;373(17):1627–1639. https: // doi: 10.1056/NEJMoa1507643
Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade // Science. 2018;359(6382):1350–1355. https: // doi: 10.1126/science.aar4060
Larkin J, Lao CD, Urba WJ et al. Efficacy and Safety of Nivolumab in Patients With BRAF V600 Mutant and BRAF Wild-Type Advanced Melanoma: A Pooled Analysis of 4 Clinical Trials // JAMA Oncol. 2015;1(4):433–40. https: // doi: 10.1001/jamaoncol.2015.1184
You G, Lee Y, Kang YW et al. B7-H3×4-1BB bispecific antibody augments antitumor immunity by enhancing terminally differentiated CD8+ tumor-infiltrating lymphocytes // Sci. Adv. 2021;7(3):eaax3160. https: // doi: 10.1126/sciadv.aax3160
He LZ, Prostak N, Thomas LJ et al. Agonist anti-human CD27 monoclonal antibody induces T cell activation and tumor immunity in human CD27-transgenic mice // J. Immunol. 2013;191(8):4174–4183. https: // doi: 10.4049/jimmunol.1300409
Soldevilla MM, Villanueva H, Meraviglia-Crivelli D et al. ICOS Costimulation at the Tumor Site in Combination with CTLA-4 Blockade Therapy Elicits Strong Tumor Immunity // Mol. Ther. 2019. Nov;27(11):1878–1891. https: // doi: 10.1016/j.ymthe.2019.07.013
Schaer DA, Cohen AD, Wolchok JD. Anti-GITR antibodies--potential clinical applications for tumor immunotherapy // Curr. Opin. Investig. Drugs. 2010;11(12):1378–86. PMID: 21154120
Gough MJ, Ruby CE, Redmond WL et al. OX40 agonist therapy enhances CD8 infiltration and decreases immune suppression in the tumor // Cancer Res. 2008;68(13):5206–15. https: // doi: 10.1158/0008-5472
He X, Xu C. Immune checkpoint signaling and cancer immunotherapy // Cell. Res. 2020;30:660–669. https: // doi: org/10.1038/s41422-020-0343-4
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
© АННМО «Вопросы онкологии», Copyright (c) 2021