ЧАСОВЫЕ ГЕНЫ И РАК МОЛОЧНОЙ ЖЕЛЕЗЫ
Загрузок: 50
Просмотров: 80
PDF

Ключевые слова

ЧАСОВЫЕ ГЕНЫ
ЦИРКАДНЫЕ ЦИКЛЫ
РАК МОЛОЧНОЙ ЖЕЛЕЗЫ
ФАКТОРЫ РИСКА
МЕЛАТОНИН

Как цитировать

Голубев, А., Панченко, А., Губарева, Е., Киреева, Г., & Анисимов, В. (2019). ЧАСОВЫЕ ГЕНЫ И РАК МОЛОЧНОЙ ЖЕЛЕЗЫ. Вопросы онкологии, 65(1), 43–55. https://doi.org/10.37469/0507-3758-2019-65-1-43-55

Аннотация

«Часовые» гены (ЧГ) являются центральными компонентами генерации циркадных циклов (ЦЦ) в организме, обеспечивающих соответствие его состояния времени суток. Нарушения этого соответствия как со стороны внешних условий (сменная работа, избыточное ночное освещение, смена часовых поясов), так и со стороны изменений в ЦЦ организма, в том числе на уровне ЧГ, являются факторами риска развития опухолей, в первую очередь рака молочной железы (РМЖ). Рассмотрены обзоры и результаты мета-анализа эпидемиологических данных и экспериментальных работ по этой проблеме, опубликованные за последние 5 лет. Наиболее значимым феноменом является существенное повышение риска РМЖ у женщин, имеющих сменный характер работы. Представляется перспективной разработка схем применения мелатонина, позволяющих синхронизировать ЦЦ в опухоли и организме так, чтобы совместить по времени суток максимумы чувствительности опухоли к терапии и резистентности организма к ее возможным побочным эффектам.

https://doi.org/10.37469/0507-3758-2019-65-1-43-55
Загрузок: 50
Просмотров: 80
PDF

Библиографические ссылки

Anisimov V.N. the role of pineal gland in breast cancer development // Crit. Rev. oncol. Hematol. - 2003. - т. 46. - № 3. - C. 221-234.

Anisimov V.N. Metformin for cancer and aging prevention: is it a time to make the long story short? // Onco-target. - 2015. - Т. 6. - № 37. - C. 39398-39407.

Ballesta A., Innominato P.F., Dallmann R., Rand D.A., Levi F.A. Systems ohronotherapeutics // Pharmacol. Rev. - 2017. - T. 69. - № 2. - C. 161-199.

Benna C., Helfrich-Forster C., Rajendran S., Monticelli H., et al. Genetic variation of clock genes and cancer risk: a field synopsis and meta-analysis // oncotarget. - 2017. - T. 8. - № 14. - C. 23978-23995.

Bieler J., Cannavo R., Gustafson K., Gobet C., et al. Robust synchronization of coupled circadian and cell cycle oscillators in single mammalian cells // Mol. Syst. Biol. - 2014. - T. 10. - № 7. C. n/a-n/a.

Binkhorst L., Kloth J. S. L., de Wit A. S., de Bruijn P., et al. Circadian variation in tamoxifen pharmacokinetics in mice and breast cancer patients // Breast Cancer Res. Treat. - 2015. - T. 152. - № 1. - C. 119-128.

Blakeman V., Williams J.L., Meng Q.-J., Streuli C.H. Circadian clocks and breast cancer // Breast Cancer Res. - 2016. - T. 18. - № 1. - C. 89.

Bojkova B., Kajo K., Kiskova T., Kubatka P., et al. Metformin and melatonin inhibit DMBA-induced mammary tumorigenesis in rats fed a high-fat diet // Anti-Cancer Drugs. - 2018. - T. 29. - № 2. - C. 128-135.

Borniger J.C., Walker li W.H., Surbhi, Emmer K.M. et al. A Role for hypocretin/orexin in metabolic and sleep abnormalities in a mouse model of non-metastatic breast cancer // Cell Metab. - 2018. - T. 28. - № 1. - C. 118-129.e5.

Cardinali D., Escames G., Acuna-Castroviejo D., et al. Melatonin-induced oncostasis, mechanisms and clinical relevance // J. Integrative Oncol. - 2016. - T. S1.

Carlberg C., Wiesenberg I. The orphan receptor family RZR/ROR, melatonin and 5-lipoxygenase: an unexpected relationship // J. Pineal Res. - 1995. - T. 18. - № 4. - C. 171-178.

Chen Z., Yoo S.-H., Takahashi J. S. Development and therapeutic potential of small-molecule modulators of circadian systems // Annu. Rev. Pharmacol. Toxicol. - 2018. - T. 58. - № 1. - C. 231-252.

Chun S.K., Chung S., Kim H. D., Lee J. H. et al. A synthetic cryptochrome inhibitor induces anti-proliferative effects and increases chemosensitivity in human breast cancer cells // Biochem. Biophys. Res. Commun. - 2015. - T. 467. - № 2. - C. 441-446.

Dauchy R. T., Xiang S., Mao L., Brimer S. et al. Circadian and melatonin disruption by exposure to light at night drives intrinsic resistance to tamoxifen therapy in breast cancer // Cancer Res. - 2014. - T. 74. - № 15. - C. 4099-110.

de Assis L. V. M., Kinker G. S., Moraes M. N., Markus R. P. et al. Expression of the circadian clock gene BMAL1 positively correlates with antitumor immunity and patient survival in metastatic melanoma // Frontiers oncol. - 2018. - T. 8. - № 185.

Dibner C., Schibler U., Albrecht U. The mammalian circadian timing system: organization and coordination of central and peripheral clocks // Annu. Rev. Physiol. - 2010. - T. 72. - № 1. - C. 517-549.

Dierickx P., Van Laake L. W., Geijsen N. Circadian clocks: from stem cells to tissue homeostasis and regeneration // EMBO Reports, 2017.

El-Athman R., Relogio A. Escaping circadian regulation: An emerging hallmark of cancer? // Cell Systems. - 2018. - T. 6. - № 3. - C. 266-267.

El Cheikh R., Bernard S., El Khatib N. A multiscale modelling approach for the regulation of the cell cycle by the circadian clock // J. Theor. Biol. - 2017. - T. 426. - C. 117-125.

Elshazley M., Sato M., Hase T., Yamashita R., et al. The circadian clock gene BMAL1 is a novel therapeutic target for malignant pleural mesothelioma // Int. J. Cancer. - 2012. - T. 131. - № 12. - C. 2820-2831.

Fan J., Lv Z., Yang G., Liao T. et al. Retinoic acid receptor-related orphan receptors: Critical roles in tumorigenesis // Frontiers Immunol. - 2018. - T. 9. - № 1187.

Feillet C., Krusche P., Tamanini F., Janssens R. C., et al. Phase locking and multiple oscillating attractors for the coupled mammalian clock and cell cycle // Proc. Natl. Acad. Sci. U. S. A. - 2014. -T. 111. - № 27. - C. 9828-33.

Garcia J. A., Volt H., Venegas C., Doerrier C. et al. Disruption of the NF-kB/NLRP3 connection by melatonin requires retinoid-related orphan receptor-a and blocks the septic response in mice // FASEB J. - 2015. - T. 29. - № 9. - C. 3863-3875.

Gaucher J., Montellier E., Sassone-Corsi P. Molecular cogs: Interplay between circadian clock and cell cycle // Trends Cell Biol. - 2018.

Giacchetti S., Dugue P. A., Innominato P. F., Bjarnason G. A., et al. Sex moderates circadian chemotherapy effects on survival of patients with metastatic colorectal cancer: a meta-analysis // Ann. Oncol. - 2012. - T. 23. - № 12. - C. 3110-3116.

Giacchetti S., Li X., Ozturk N., Cuvier C. et al. Abstract P406-06: Consistent dosing-time dependent tolerability of everolimus (EV) in a pilot study in women with metastatic breast cancers (MBC) and in a mouse chronopharmacology investigation // Cancer Research. - 2017. - T. 77. - № 4 Supplement. - C. P4-06-06-P4-06-06

Golubev A. Applications and implications of the exponentially modified gamma distribution as a model for time variabilities related to cell proliferation and gene expression // J. Theor. Biol. -2016. - T. 393. - C. 203-217.

Gonzalez-Gonzalez A., Mediavilla M., Sanchez-Barcelo E. Melatonin: A molecule for reducing breast cancer risk // Molecules. - 2018. - T. 23. - № 2. - C. 336.

Griffin F., Marignol L. Therapeutic potential of melatonin for breast cancer radiation therapy patients // Int. J. Radiat. Biol. - 2018. - T. 94. - № 5. - C. 472-477.

Gutierrez-Monreal M. A., Trevino V., Moreno-Cuevas J. E., Scott S.-P. Identification of circadian-related gene expression profiles in entrained breast cancer cell lines // Chronobiol. Internat. - 2016. - T. 33. - № 4. - C. 392-405.

Hansen J. Night shift work and risk of breast cancer // Curr. Environ. Health. Rep. - 2017. - T. 4. - № 3. - C. 325-339.

He B., Chen Z. Molecular targets for small-molecule modulators of circadian clocks // Current Drug Metab - 2016. - T. 17. - № 5. - C. 503-512.

He B., Zhao Y., Xu L., Gao L., et al. The nuclear melatonin receptor RoRa is a novel endogenous defender against myocardial ischemia/reperfusion injury // J. Pineal Res. - 2016. - T. 60. - № 3. - C. 313-326.

Hill S. M., Belancio V. P., Dauchy R. T., Xiang S. et al. Melatonin: an inhibitor of breast cancer // Endocr. Relat. Cancer. - 2015. - T. 22. - № 3. - C. R183-204.

Jung-Hynes B., Huang W., Reiter R. J., Ahmad N. Melatonin resynchronizes dysregulated circadian rhythm circuitry in human prostate cancer cells // J. Pineal Res. - 2010. - T. 49. - № 1. - C. 60-68.

Katamune C., Koyanagi S., Shiromizu S., Matsunaga N., et al. Different roles of negative and positive components of the circadian clock in oncogene-induced neoplastic transformation // J. Biol. Chem. - 2016. - T. 291. - № 20. - C. 10541-50.

Kiessling S., Beaulieu-Laroche L., Blum I. D., Landgraf D., et al. Enhancing circadian clock function in cancer cells inhibits tumor growth // BMC Biology. - 2017. - T. 15. - № 1. - C. 13.

Kopalle H. M., Partch C. L. An imPERfect link to cancer? // Cell Cycle. - 2014. - T. 13. - № 4. - C. 507.

Kubatka P., Zubor P., Busselberg D., Kwon T. K. et al. Melatonin and breast cancer: Evidences from preclini-cal and human studies // Crit. Rev. oncol. Hematol. - 2018. - T. 122. - C. 133-143.

Lamia K.A. Ticking time bombs: connections between circadian clocks and cancer // F1000 Research. - 2017. - T. 6. - C. 1910.

Laranjeiro R., Tamai T. K., Letton W., Hamilton N., et al. Circadian clock synchronization of the cell cycle in ze-brafish occurs through a gating mechanism rather than a period-phase locking process // J. Biol. Rhythms. - 2018. - T. 33. - № 2. - C. 137-150.

Lesicka M., Jablonska E., Wieczorek E., Seroczynska B., et al. Altered circadian genes expression in breast cancer tissue according to the clinical characteristics // PLoS One. - 2018. - T. 13. - № 6. - C. e0199622.

Li Y., Li S., Zhou Y., Meng X., et al. Melatonin for the prevention and treatment of cancer // Oncotarget. - 2017. - T. 8. - № 24. - C. 39896-39921.

Lin H. H., Farkas M. E. Altered circadian rhythms and breast cancer: From the human to the molecular level // Front Endocrinol. - 2018. - T. 9. - C. 219.

Mao L., Dauchy R. T., Blask D. E., Slakey L. M., et al. Circadian gating of epithelial-to-mesenchymal transition in breast cancer cells via melatonin-regulation of GSK3 // Mol. Endocrinol. - 2012. - T. 26. - № 11. - C. 1808-1820.

Masri S., Cervantes M., Sassone-Corsi P. The circadian clock and cell cycle: interconnected biological circuits // Curr. Opin. Cell Biol. - 2013. - T. 25. - № 6. - C. 730-734.

Matsu-Ura T., Dovzhenok A., Aihara E., Rood J., et al. Intercellular coupling of the cell cycle and circadian clock in adult stem cell culture // Mol. Cell. - 2016. - T. 64. - № 5. - C. 900-912.

Matsuura T., Moore S. R., Hong C. I. WNT takes two to tango: Molecular links between the circadian clock and the cell cycle in adult stem cells // J. Biol. Rhythms. - 2018. - T. 33. - № 1. - C. 5-14.

Matsunaga N., Ogino T., Hara Y., Tanaka T., et al. Optimized dosing schedule based on circadian dynamics of mouse breast cancer stem cells improves the antitumor effects of aldehyde dehydrogenase // Cancer Research. - 2018.

Mavroudis P. D., DuBois D. C., Almon R. R., Jusko W. J. Modeling circadian variability of core-clock and clock-controlled genes in four tissues of the rat // PLoS One. - 2018. - T. 13. - № 6. - C. e0197534.

McQueen C. M., Schmitt E. E., Sarkar T. R., Elswood J., et al. PER2 regulation of mammary gland Development // Development. - 2018. - T. 145.

Menet J. S., Pescatore S., Rosbash M. CLOCK: BMAL1 is a pioneer-like transcription factor // Genes Dev. - 2014. - T. 28. - № 1. - C. 8-13.

Mocellin S., Tropea S., Benna C., Rossi C. R. Circadian pathway genetic variation and cancer risk: evidence from genome-wide association studies // BMC Medicine. - 2018. - T. 16. - № 1. - C. 20.

Nagoshi E., Saini C., Bauer C., Laroche T., et al. Circadian gene expression in individual fibroblasts: Cell-autonomous and self-sustained oscillators pass time to daughter Cells // Cell. - 2004. - T. 119. - № 5. - C. 693-705.

Naji L., Carrillo-Vico A., Guerrero J.M., Calvo J.R. Expression of membrane and nuclear melatonin receptors in mouse peripheral organs // Life Sci. - 2004. - T. 74. - № 18. - C. 2227-2236.

Ozturk N., Ozturk D., Kavakli I.H., Okyar A. Molecular aspects of circadian pharmacology and relevance for cancer chronotherapy // Int. J. Molec. Sci. - 2017. - T. 18. - № 10. - C. 2168.

Ozturk N., Ozturk D., Pala-Kara Z., Kaptan E., et al. The immune system as a chronotoxicity target of the anticancer mTOR inhibitor everolimus // Chronobiol. Internat. - 2018. - T. 35. - № 5. - C. 705-718.

Pena Ramirez J., Olvera L. A., Nijmeijer H., Alvarez J. The sympathy of two pendulum clocks: beyond Huygens' observations // Scientific Reports. - 2016. - T. 6. - C. 23580.

Pendergast J.S., Yeom M., Reyes B.A., Ohmiya Y., Yamazaki S. Disconnected circadian and cell cycles in a tumor-driven cell line // Communicat. Integrat. Biol. - 2010. - T. 3. - № 6. - C. 536-539.

Pierre K., Rao R.T., Hartmanshenn C., Androulakis I.P. Modeling the influence of seasonal differences in the HPA axis on synchronization of the circadian clock and cell cycle // Endocrinology. - 2018. - T. 159. - № 4. - C. 1808-1826.

Rabstein S., Harth V., Justenhoven C., Pesch B., et al. Polymorphisms in circadian genes, night work and breast cancer: Results from the GENICA study // Chronobiol. Internat. - 2014. - T. 31. - № 10. - C. 1115-1122.

Reiter R. J., Rosales-Corral S. A., Tan D.-X., Acuna-Castroviejo D., et al. Melatonin, a full service anti-cancer Agent: Inhibition of initiation, progression and metastasis // Int. J. Molec. Scie. - 2017. - T. 18. - № 4. - C. 843.

Rena G., Hardie D. G., Pearson E. R. The mechanisms of action of metformin // Diabetologia. - 2017. - T. 60. - № 9. - C. 1577-1585.

Reszka E., Przybek M., Muurlink O., Peplonska B. Circadian gene variants and breast cancer // Cancer Lett. - 2017. - T. 390. - C. 137-145.

Reszka E., Wieczorek E., Przybek M., Jablonska E. et al. Circadian gene methylation in rotating-shift nurses: a cross-sectional study // Chronobiol. Int. - 2018. - T. 35. - № 1. - C. 111-121.

Rosenberg L. H., Lafite M., Quereda V., Grant W., et al. Therapeutic targeting of casein kinase 1S in breast cancer // Sci. Translat. Med. - 2015. - T. 7. - № 318. - C. 318ra202-318ra202.

Samulin Erdem J., Skare 0., Petersen-0verleir M., Not0 H. 0. et al. Mechanisms of breast cancer in shift workers: DNA methylation in five core circadian genes in nurses working night shifts // J. Cancer. - 2017. - T. 8. - № 15. - C. 2876-2884.

Sancar A., Lindsey-Boltz L. A., Gaddameedhi S., Selby C. P. et al. Circadian clock, cancer, and chemotherapy // Biochemistry. - 2015. - T. 54. - № 2. - C. 110-123.

Shilts J., Chen G., Hughey J. J. Evidence for widespread dysregulation of circadian clock progression in human cancer // Peer J. - 2018. - T. 6. - C. e4327.

Shostak A. Human clock genes and cancer // Curr. Sleep Med. Reps. - 2018. - T. 4. - № 1. - C. 65-73.

Shulin X., T. D. R., Adam H., Lulu M. et al. Doxorubicin resistance in breast cancer is driven by light at night-induced disruption of the circadian melatonin signal // J. Pineal Res. - 2015. - T. 59. - № 1. - C. 60-69.

Slominski A.T., Zmijewski M.A., Jetten A.M. RORa is not a receptor for melatonin // BioEssays. - 2016. - T. 38. - № 12. - C. 1193-1194.

Stephanou A., Fanchon E., Innominato P. F., Ballesta A. Systems biology, systems medicine, systems pharmacology: The what and the why // Acta Biotheoretica. - 2018.

Sulli G., Rommel A., Wang X., Kolar M. J. et al. Pharmacological activation of REV-ERBs is lethal in cancer and oncogene-induced senescence // Nature. - 2018. - T. 553. - C. 351.

Sultan A., Parganiha A., Sultan T., Choudhary V., Pati A. K. Circadian clock, cell cycle, and breast cancer: an updated review // Biol. Rhythm Res. - 2017. - T. 48. - № 3. - C. 353-369.

Takahashi J. S. Transcriptional architecture of the mammalian circadian clock // Nat. Rev. Genet. - 2017. - T. 18. - № 3. - C. 164-179.

Talib W. Melatonin and cancer hallmarks // Molecules. - 2018. - T. 23. - № 3. - C. 518.

Tang G. H., Satkunam M., Pond G. R., Steinberg G. R., et al. Association of metformin with breast cancer incidence and mortality in patients with Type II diabetes: A GRADE-assessed systematic review and meta-analysis // Cancer Epidemiol. Biomarkers Prev. - 2018. - T. 27. - № 6. - C. 627-635.

Traynard P., Feillet C., Soliman S., Delaunay F., Fages F. Model-based investigation of the circadian clock and cell cycle coupling in mouse embryonic fibroblasts: Prediction of RevErb-a up-regulation during mitosis // Biosystems. - 2016. - T. 149. - C. 59-69.

Trott A. J., Menet J. S. Regulation of circadian clock transcriptional output by CLOCK:BMAL1 // PLoS Genetics. - 2018. - T. 14. - № 1. - C. e1007156.

Truong T., Liquet B., Menegaux F., Plancoulaine S., et al. Breast cancer risk, night work and circadian clock gene polymorphisms // Endocrine-Related Cancer. - 2014.

Ugolkov A., Gaisina I., Zhang J. S., Billadeau D. D., et al. GSK-3 inhibition overcomes chemoresistance in human breast cancer // Cancer Lett. - 2016. - T. 380. - № 2. - C. 384-92.

Vriend J., Reiter R. J. Melatonin feedback on clock genes: a theory involving the proteasome // J. Pineal Res. - 2015. - T. 58. - № 1. - C. 1-11.

Walton Z. E., Altman B. J., Brooks R. C., Dang C. V. Circadian clock's cancer connections // Annu. Rev. Cancer Biol. - 2018. - T. 2. - № 1. - C. 133-153.

Weger M., Diotel N., Dorsemans A. C., Dickmeis T., Weger B. D. Stem cells and the circadian clock // Dev. Biol. - 2017. - T. 431. - № 2. - C. 111-123.

Wei K., Wang Q., Gan J., Zhang S., et al. Mapping genes for drug chronotherapy // Drug Discovery Today. - 2018.

Welsh D. K., Yoo S. H., Liu A. C., Takahashi J. S., Kay S. A. Bioluminescence imaging of individual fibroblasts reveals persistent, independently phased circadian rhythms of clock gene expression // Curr. Biol. - 2004. - T. 14. - № 24. - C. 2289-95.

Wible R. S., Ramanathan C., Sutter C. H., Olesen K. M., et al. NRF2 regulates core and stabilizing circadian clock loops, coupling redox and timekeeping in Mus musculus // eLife. - 2018. - T. 7. - C. e31656.

Xiang S., Mao L., Duplessis T., Yuan L., et al. Oscillation of clock and clock controlled genes induced by serum shock in human breast epithelial and breast cancer cells: Regulation by melatonin // Breast Cancer: Basic and Clinical Research. - 2012. - T. 6. - C. BCBCR.S9673.

Ye Y., Xiang Y., Ozguc F. M., Kim Y., et al. The genomic landscape and pharmacogenomic interactions of clock genes in cancer chronotherapy // Cell Syst. - 2018. - T. 6. - № 3. - C. 314-328.e2.

Yeom M., Pendergast J. S., Ohmiya Y., Yamazaki S. Circadian-independent cell mitosis in immortalized fibroblasts // Proc. Natl. Acad. Sci. U.S.A. - 2010. - T. 107. - № 21. - C. 9665-9670.

Yuan X., Zhu C., Wang M., Mo F., Du W., Ma X. Night shift work increases the risks of multiple primary cancers in women: A systematic review and meta-analysis of 61 articles // Cancer Epidemiol. Biomarkers. - 2018. - T. 27. - № 1. - C. 25-40.

Zhang C.-S., Li M., Ma T., Zong Y., et al. Metformin activates AMPK through the lysosomal pathway // Cell Metabolism. - 2016. - T. 24. - № 4. - C. 521-522.

Zhang R., Lahens N. F., Ballance H. I., Hughes M. E., Hogenesch J. B. A circadian gene expression atlas in mammals: implications for biology and medicine // Proc. Natl. Acad. Sci. U. S. A. - 2014. - T. 111. - № 45. - C. 16219-24.

Zienolddiny S., Haugen A., Lie J. A., Kjuus H., et al. Analysis of polymorphisms in the circadian-related genes and breast cancer risk in Norwegian nurses working night shifts // Breast Cancer Res. - 2013. - T. 15. - № 4. - C. R53.

Лицензия Creative Commons

Это произведение доступно по лицензии Creative Commons «Attribution-NonCommercial-NoDerivatives» («Атрибуция — Некоммерческое использование — Без производных произведений») 4.0 Всемирная.

© АННМО «Вопросы онкологии», Copyright (c) 2019